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Abstract

Background

About 25% of women in the United States are obese prior to becoming pregnant. Although

there is some knowledge about the relationship between the gastrointestinal microbiota and

obesity, little is known about the relationship between pre-pregnancy obesity and the gastro-

intestinal microbiota in pregnancy or its impact on infant gut microbiota. However, the com-

position of the gut microbiota early in life may influence childhood health. Thus, the objective

of this research was to identify associations between maternal pre-pregnancy obesity and

the pregnancy (n = 39) or early infancy (n = 39) microbiotas.

Results

Fecal bacterial communities from overweight women had lower microbiota diversity (Chao1:

p = 0.02; inverse Simpson: p = 0.05; Shannon: p = 0.02) than communities from normal

weight or obese women. The within-group microbiota composition of overweight women dif-

fered from those of normal and obese women at the genus and phylum levels (p = 0.003

and p = 0.02, respectively). Pre-pregnancy overweight women had higher abundances of

Bacteroides and lower Phascolarctobacterium than women who were normal weight or

obese prior to becoming pregnant. Normal weight women had lower abundances of Acida-

minococcus and Dialister than overweight and obese women. Infant community composi-

tion tended to differ in membership (Sorensen index) by maternal pre-pregnancy BMI

category, and significantly differed by delivery mode and breastfeeding exclusivity (p = 0.06,

p = 0.001, p = 0.008, respectively). Infants from normal weight women had lower abun-

dances of Megasphaera than infants from overweight or obese women. Streptococcus was
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lowest in infants from overweight women, and Staphylococcus was lowest in infants from

obese women.

Conclusion

Maternal and infant microbiotas are associated with and might be affected by maternal pre-

pregnancy BMI. Future work should determine if there are also functional differences in the

infant microbiome, if those functional differences are related to maternal pre-pregnancy

BMI, and whether differences in composition or traits persist over time.

Introduction

The gut hosts a diverse community of microbes that interact with biological functions in both

humans and animals. For example, the gut microbiota impacts immune system development,

digestion of food components and influences weight gain [1–4]. In mice, the presence of a gut

microbiota promotes increased adiposity and weight gain, possibly by increasing the amount

of energy extracted and absorbed from food [1, 3, 5, 6]. Similarly, germ-free mice transplanted

with the microbiota from an obese human twin have more body fat compared to mice that

receive a microbiota transplant from the lean twin [1]. In healthy human adults, there is evi-

dence that shifts in the Firmicutes and Bacteroidetes abundances are associated with weight

gain and obesity, though these shifts in phyla abundances are not consistent between studies

[1, 7, 8]. Thus, although there is strong evidence for a relationship between gut microbiota and

obesity in mice, the evidence in humans is weak [8]. To address this question more definitively

in humans, analysis of these communities during pregnancy and early infancy [9, 10] can

inform how the gut microbiota is associated with maternal pre-pregnancy BMI. While it is

known that maternal pre-pregnancy BMI is associated with infant development and child

weight [11, 12], it’s unknown why these relationships exist. However, these effects may be

mediated through the pregnancy and infancy microbiotas [13].

In the United States, 50% of women giving birth in 2014 were overweight or obese [14]. In

adults, there is an association between higher BMI and differences in the microbiome, such as

low alpha diversity, altered community structure and changes in the functional capacity of the

metagenome [15]. Similar changes have been observed over the course of pregnancy [10] pos-

sibly due to alterations in hormone levels, the immune system and metabolism [16]. In the

first trimester, the gut microbiota displays a significantly lower alpha and higher beta diversity

concurrent with higher abundances of the phyla Proteobacteria and Actinobacteria compared

to the third trimester [17]. There is evidence of differences in the microbiome during preg-

nancy based on body weight [18, 19] and gestational weight gain [20], but the evidence on pre-

pregnancy weight and microbiota in late pregnancy is contradictory. Some studies found no

association between pre-pregnancy BMI and the pregnancy microbiota [10, 20], while another

found overweight/obese women had a lower abundance of Parabacteroides and Bifidobacter-
ium compared to normal weight [21]. This suggests that pregnancy may be an important driv-

ing factor of the maternal gut microbiota in some populations, which can affect the bacteria

infants are exposed to during and after birth [22].

The infant microbiota increases in bacterial abundance and becomes more diverse over

time as the infant is exposed to changes in diet and environment [23, 24]. One of the earliest

environmental exposures is mode of delivery. In the first week of life, vaginally born infants

have a higher proportion of their communities in common with their mothers’ intestinal
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communities such as Bifidobacterium, Parabacteroides and Escherichia/Shigella compared to

infants born via cesarean delivery [4]. In contrast, the microbiota of infants born via C-section

are enriched in skin, oral and environmental bacteria such as Enterobacter, Staphylococcus and

Streptococcus [4, 25, 26]. At 4 and 12 months, the association between mode of delivery and

gut microbiota is still present, but the differences decrease over time [4]. Breastfeeding also

affects gut microbiota [27]. Lactobacilli and Bifidobacterium, both of which utilize human milk

oligosaccharides tend to dominate the gut microbiota of breastfed infants [4, 28, 29].

High maternal pre-pregnancy BMI has been linked to an increased risk of high childhood

BMI [30]. Obese children are more likely to be obese adults with chronic medical problems

[31]. The infant microbiome may explain predisposition to weight gain and metabolic dysre-

gulation and may also explain the effects that breastfeeding [32] and cesarean delivery [33]

have on obesity risk during childhood. A study by Tun et al. found that children at 1 year of

age were 3 times more likely to be overweight if they were born vaginally from pre-pregnancy

overweight or obese mothers, which was associated with an increased abundance of Lachnos-
piraceae [34]. Other studies that have assessed maternal pre-pregnancy BMI and the infant

microbiota found that beta diversity was significantly different between infants from normal

and overweight/obese groups [21] and another found that only vaginally born neonates had

altered microbiota based on pre-pregnancy BMI [35].

Here we use samples from women in their third trimester of pregnancy and their infants to

investigate associations between maternal pre-pregnancy BMI and the pregnancy or infant

microbiotas, controlling for effects of other factors such as breastfeeding and delivery mode.

Materials and methods

Subjects

Women were enrolled as part of the ARCHGUT or BABYGUT cohorts. ARCHGUT is part of a

larger study (ARCH, the Archive for Research in Child Health) in Lansing and Traverse City,

MI. The ARCH cohort recruited participants from one clinic in each location and BABYGUT

recruited participants from several clinics in Lansing. All ARCHGUT and BABYGUT partici-

pants provided written informed consent upon enrollment. The Michigan State University

Human Research Protection Program approved the studies (IRB 15–1240 and 14-170M).

Sample collection

Fecal samples were collected by the women (n = 42) at their homes during the third trimester;

mothers also collected fecal samples from their infant at home when the infant was around 1

week of age (n = 43). Of these, only paired samples (dyads with both a pregnancy and an

infancy sample) were included in the analysis. Furthermore, for a single pregnancy sample

with two infancy samples (twin pair), only the pregnancy and first-born twin samples were

included in the final analyses. The final sample size was n = 39 dyads. Infants were a median of

8.5 days old at the time of sample collection. Collection kits were assembled at the research

facility and sent to the participants via mail. The collection kits included instructions for taking

a fecal sample, a ParaPak tube for sample collection (Meridian Bioscience, 900312), a box with

postage to return the sample, a commode collection kit for the third trimester samples

(Thermo Fisher, 02-544-208) or diapers for the infant sample. Samples were sent to the lab by

mail or retrieved from the home, and fecal aliquots were stored at -80˚C upon reaching the

lab. The average time from sample collection to receipt was 4.2±2.2 days (median of 4 days)

for the pregnancy samples and 5.1±3.3 days (median of 4 days) for the infant samples. There

were no significant differences in shipping time across BMI categories for either pregnancy or
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infant samples (Table 1). Participants completed questionnaires at the time of enrollment and

at the time of each sample collection.

DNA extraction and amplification

DNA extractions were performed using the MoBio Powersoil DNA Isolation kit (Qiagen

MoBio, Carlsbad, CA) per the Human Microbiome Project’s protocol [36] with a few alter-

ations: after incubating in C3 solution, the samples were centrifuged for 2 minutes and the

DNA was eluted from the spin columns with 50 μL of low EDTA TE buffer (IDT, Coralville,

IA) heated to 55˚C.

Barcoded primers were used to amplify the V4 region of the 16S rRNA gene following the

mothur wet lab documentation [37]. Primers SB501-SB508 and SA701-SA712 were ordered

from IDT (Coralville, IA). PCR amplification also followed the wet lab protocol outlined in the

mothur documentation [37]. Briefly, Accuprime Pfx Supermix (ThermoFisher, Waltham,

MA) was mixed with up to 10 ng of template DNA and the primer pair (final concentration of

500 nM for both the forward and reverse primers) in a final reaction volume of 20 μL. Reac-

tions were performed in triplicate and amplified using the following thermocycler settings:

(1x) 2 min at 95˚C; (30x) 20 s at 95˚C, 15 s at 55˚C, 5 min at 72˚C; 10 min 72˚C. Amplification

success was checked by electrophoresis on a 1% agarose gel run at 200 V for 30 min. Successful

amplification triplicates were pooled and purified using Agencourt AMPure XP (Beckman

Coulter, Brea, CA) with the following alterations to the protocol: 0.7 times the sample volume

of AMPure was used for purification and 16S rRNA DNA was eluted using 25 μL of low

EDTA TE buffer (IDT, Coralville, IA). This lower volume of AMPure excludes fragments of

DNA with a lower base count than the amplified DNA. After purification, the concentration of

16S rRNA gene amplicons was quantified using the Quant-IT dsDNA assay kit (Invitrogen,

Carlsbad, CA). Purified 16S rRNA amplicons were pooled and quality checked using an Agi-

lent 2100 Bioanalyzer with the High Sensitivity DNA Chip (Agilent, 5067–4626). For

Table 1. Participant characteristics.

Pregnant Women All 18.5� BMI < 25 25� BMI < 30 BMI� 30 p-value

Participants, n 39 12 11 16

Pre-pregnancy BMI (kg m^-2)1 28.5 ± 5.5 22.7 ± 1.4c 26.7 ± 1.5b 34.1 ± 3.3a <0.001

Maternal Age (years)1 31.4 ± 4.5 33.3 ± 2.5 29.6 ± 5.14 31.0 ± 5.1 0.15

Currently on Antibiotics3 1 (2.6) 1 (8.3) 0 (0.0) 0 (0.0) 0.32

Parity2 2.0 (1–6) 2.0 (1–5) 2.0 (1–3) 2.0 (1–6) 0.96

Sample Shipping Time (days)2 4.0 (0–11) 4.0 (1–7) 4.0 (0–11) 4.5 (2–7) 0.96

Infants All 18.5� BMI < 25 25� BMI < 30 BMI� 30 p-value

Vaginal Delivery3 26 (66.7) 11 (91.7) 5 (45.5) 10 (62.5) 0.06

Female3 14 (35.9) 3 (25.0) 4 (36.4) 7 (43.8) 0.59

Exclusively Breastfed3 24 (61.5) 11 (91.7)a 6 (54.5)ab 7 (43.8)b 0.03

Antibiotic Exposure Since Birth33 4 (10.3) 0 (0.0) 2 (18.2) 2 (12.5) 0.33

Infant Sample Shipping Time (days)2 4.0 (1–15) 3.0 (2–11)4 5.0 (1–15) 5.0 (2–14)4 0.85

Infant Age at Sampling Time (days)2 8.5 (2–111) 5.5 (2–57) 10.0 (7–60) 17.0 (3–111)4 0.05

Values in a row that do not contain the same superscript are significantly different, p<0.05
1mean ± SD
2median (range)
3n (%)
4Missing information for one sample

https://doi.org/10.1371/journal.pone.0213733.t001
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sequencing, equal amounts (in nanograms) of the purified 16S samples were pooled. The

pooled DNA was diluted to 2.5 ng/μL and submitted to the Michigan State University

Research Technology Support Facility Genomics Core for paired-end 250 base-pair sequenc-

ing on the Illumina MiSeq platform using V2 chemistry. Sequences have been deposited in the

NCBI SRA under accession number PRJNA506270.

Processing and analysis of sequence data

Sequence reads were processed in mothur using the Illumina MiSeq SOP [37] and operational

taxonomic unit (OTU) taxonomies were assigned by phylotype using the SILVA reference tax-

onomy (release 128) [38]. Read processing was done in mothur using the High-Performance

Computing Cluster at Michigan State University. Sample reads were rarefied to 15000 reads

per sample before further analysis and rarefaction curves confirmed adequate community

coverage.

Data analysis

The pregnant women were classified by pre-pregnancy BMI categories of normal

(18.5�BMI<25), overweight (25�BMI<30) or obese (BMI�30). Pre-pregnancy BMI was cal-

culated from the self-reported height and weight of the participants [39]. Breast milk in the

diet was reported by mothers who completed a published survey that separates the infant diet

into seven levels of human milk exposure (100%, 80%, 50–80%, 50%, 20–50%, 20% and 0%)

[40]. However, because of insufficient sample size for each of the groups, diet was categorized

as exclusively or non-exclusively receiving human milk in the diet, either from the breast or a

bottle. Infants whose mothers reported the infant had been given any antibiotic since birth

were considered antibiotic exposed (n = 4, 2 in overweight and 2 in obese, Table 1). However,

none of these infants were taking antibiotics at the time the sample was collected. Alpha

(within-sample) diversity (Chao1, inverse Simpson and Shannon) was calculated in R [41]

with the vegan package [42] and compared using a Kruskal-Wallis test or a Spearman correla-

tion test. Pairwise tests between BMI categories was performed using a Dunn test. Sorensen

(community composition) and Bray-Curtis (community structure) dissimilarities were calcu-

lated in R from the abundance data using the vegan package and ordinated using principle

coordinate analysis (PCoA). Permutational multivariate analysis of variance (PERMANOVA)

was performed using the adonis function to test for significant differences in beta-diversity.

The adonis2 function was used to adjust for covariates in the pregnant women and infant data.

For the women, maternal age, cohort (ARCHGUT or BABYGUT) and shipping time were

included as covariates with pre-pregnancy BMI. For the infants, shipping time, breastfeeding,

sex, cohort, infant age and delivery mode were covariates with maternal pre-pregnancy BMI.

Permutation of dispersion (PERMDISP—betadisper function in the vegan package) was used

to test for differences in sample dispersion. Individual taxa were compared across BMI catego-

ries using a negative binomial model in the MASS package [43] on the taxa that composed

>1% abundance on average. The Benjamini-Hochberg method was used for false discovery

rate correction. P-values less than 0.05 were considered significant, and p-values less than 0.10

were considered a trend.

Results

Subject characteristics

We collected fecal samples from 39 dyads. Of these, there was one twin birth, and only one of

the twins was included in this analysis. In total, there were 12 normal weight, 11 overweight
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and 16 obese women. Among the women, none of the self-reported characteristics differed by

BMI category (Table 1). Fewer infants of obese women consumed breastmilk exclusively

(Table 1). A higher percent of infants born to normal weight mothers tended to be born vagi-

nally compared to infants of overweight and obese mothers (Table 1). Infant age at the time of

sampling ranged from 2 to 111 days (median = 8.5 days). Infants born to normal weight

women tended to be younger at the time of sampling than those born to overweight or obese

women (Table 1). The characteristics of participants in ARCHGUT (n = 24) and BABYGUT

(n = 15) were similar (Table 2).

Alpha diversity

Pregnant women had significantly higher microbiota diversity at the genus level than their

infants, as measured by either Chao1 (p<0.001), inverse Simpson (p<0.001) and Shannon

indices (p<0.001). The fecal bacterial communities of women who were overweight prior to

becoming pregnant were less rich (Chao1), more even (inverse Simpson) and had a lower

diversity (Shannon) than those of women who were normal weight or obese prior to becoming

pregnant (Table 3). There was no difference in the alpha diversity of infant fecal bacterial com-

munities by maternal pre-pregnancy BMI (Table 3). Alpha diversity compared by infant age,

sex, mode of delivery, breastfeeding exclusivity, antibiotic use since birth, and sample shipping

time were not significant; however, the ARCHGUT infants had a significantly higher richness

compared to the BABYGUT cohort (S1 Table). After stratifying the infants by maternal pre-

pregnancy BMI and removing infants exposed to antibiotics since birth (n = 4), those in the

obese category that were breastfed exclusively had lower richness and Shannon diversity scores

compared to non-exclusively breastfed infants (S2 Table). Alpha diversity of the infant fecal

microbiota did not differ by mode of delivery for women who were overweight or obese prior

Table 2. Cohort characteristics.

Pregnant Women ARCH BABY p-value

N 24 15

Pre-pregnancy BMI (kg m^-2)1 29.0 ± 5.4 27.7 ± 5.8 0.47

Normal3 7 (29.2) 5 (33.3) 0.29

Overweight3 5 (20.8) 6 (40.0)

Obese3 12 (50.0) 4 (26.7)

Maternal Age (years)1 31.3 ± 3.8 31.4 ± 5.74 0.95

Currently on Antibiotics3 0 (0.0) 1 (6.7) 0.81

Parity2 2.0 (1–6) 2.0 (1–3) 0.99

Sample Shipping Time (days)2 4.0 (1–7) 5.0 (0–11) 0.09

Infants ARCH BABY p-value

Vaginal Delivery3 17 (70.8) 9 (60.0) 0.73

Female3 11 (45.8) 3 (20.0) 0.2

Exclusively Breastfed3 14 (58.3) 10 (66.7) 0.86

Antibiotic Exposure Since Birth3 1 (4.2) 3 (20.0) 0.3

Infant Sample Shipping Time (days)2 4.0 (2–14)4 6.0 (1–15)4 0.2

Infant Age at Sampling Time (days)2 20.7 ± 26.24 13.9 ± 14.4 0.66

1mean ± SD
2median (range)
3n (%)
4Missing information for one sample

https://doi.org/10.1371/journal.pone.0213733.t002
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to becoming pregnant. No comparisons between delivery mode and breastfeeding were possi-

ble in the normal weight group because of a lack of c-section deliveries and infants fed a mixed

diet (n = 1 for both).

Beta diversity

Pregnant women had different bacterial communities than infants at both the genus and phy-

lum levels for both Sorensen and Bray-Curtis dissimilarities (p = 0.001) (S1 Fig). The disper-

sion was also significantly different at the genus and phylum levels (p = 0.001) due to the large

variation in infant fecal bacterial composition and the relatively more similar communities in

the women.

We separately assessed changes in community composition (accounting for the presence

and absence of taxa based on Sorensen’s index) and community structure (accounting for the

relative contributions of taxa based on Bray-Curtis dissimilarity) in the pregnant women and

infants. During pregnancy, the fecal bacterial community structure of overweight women dif-

fered by BMI category at the phylum (F = 4.1, p = 0.003) and genus levels (F = 1.7, p = 0.02)

(Fig 1A and 1B). Adjusting for maternal age, cohort and shipping time, BMI category

remained significant at the phylum (F = 3.9, p = 0.003) and genus level (F = 1.6, p = 0.03) for

community structure. In addition, cohort (F = 2.1, p = 0.02) and shipping time (F = 1.8,

p = 0.04) were significantly associated with the fecal bacterial communities at the genus level.

The overall model for maternal age, cohort, shipping time and BMI category was significant at

the phylum (F = 2.32, p = 0.01) and genus levels (F = 1.7, p = 0.001). There were no differences

by BMI category or any other variables for community composition by the Sorensen index (S2

Fig).

In univariate analyses, infant community composition (Sorensen index) at the genus level

tended to differ by maternal pre-pregnancy BMI Category (F = 1.4, p = 0.06) and significantly

differed by delivery mode (F = 2.9, p = 0.001) and breastmilk in the infant diet (F = 2.2,

p = 0.008) (Fig 2). In a multivariate model including BMI, breastfeeding, delivery mode, sex

and antibiotic exposure, delivery mode was significant using the Sorensen index (F = 2.1,

p = 0.01), and exposure to antibiotics was significant for Bray-Curtis (F = 2.1, p = 0.04). After

additionally adjusting for sample shipping time, sex and cohort, none of the variables were sig-

nificant for Sorensen. In univariate analyses, antibiotic exposure was significant for Bray-Cur-

tis (F = 2.2, p = 0.03), but maternal pre-pregnancy BMI category was not associated with infant

gut community structure (Bray-Curtis dissimilarity matrix, S3 Fig). Similarly, the overall mul-

tivariate model for community structure (Bray-Curtis dissimilarity matrix) of the infant

microbiota was not significant. At the phylum level, there were no significant differences.

Table 3. Alpha diversity of the fecal microbiota of mothers and infants by maternal Pre-pregnancy BMI category.

Pregnant Women1 All Normal Overweight Obese p-value

Chao1 122.7 ± 23.0 133.3 ± 24.9a 107.7 ± 18.9b 125.1 ± 19.7ab 0.02

Inverse Simpson 9.6 ± 4.7 10.9 ± 5.4 6.7 ± 5.0 10.6 ± 3.1 0.05

Shannon 2.8 ± 0.5 3.0 ± 0.4a 2.4 ± 0.7b 2.9 ± 0.3a 0.02

Infants1

Chao1 46.3 ± 20.6 49.5 ± 22.0 44.2 ± 11.4 45.4 ± 25.0 0.58

Inverse Simpson 3.3 ± 1.2 3.7 ± 1.5 3.0 ± 0.9 3.2 ± 1.1 0.49

Shannon 1.4 ± 0.4 1.5 ± 0.4 1.4 ± 0.3 1.4 ± 0.4 0.51

Values in a row that do not contain the same superscript are significantly different, p<0.05
1Values reported as mean ± SD

https://doi.org/10.1371/journal.pone.0213733.t003
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When stratifying the infant samples by maternal pre-pregnancy BMI category and remov-

ing infants exposed to antibiotics (n = 4), only breastfeeding was associated with the Sorensen

index at the genus level in the subset of infants born to women who were obese prior to

becoming pregnant (F = 2.0, p = 0.02) (S4 Fig). At the phylum level, breastfeeding was signifi-

cantly associated with the gut microbiota community in infants born to either overweight

(F = 2.7, p = 0.048) or obese (F = 3.7, p = 0.009) women (S4 Fig).

Sensitivity analysis of infant microbiota data

Since age is known to be associated with changes in the infant microbiota [4, 10, 44], we con-

ducted a sensitivity analysis on two subsets of the infant data based on the median age (8.5

days) and the mean age (18 days) of the infants. Alpha diversity in either age subset was not

associated with maternal pre-pregnancy BMI, delivery mode, age, sex, sample shipping time or

cohort (S3 Table). For infants�9 days of age, only infant sex significantly associated with gut

microbiota membership as measured by the Sorensen metric (F = 1.8, 0.03), however, the dis-

persion was also significantly different (F = 5.6, p = 0.03) (S5 Fig). For infants�18 days of age,

Fig 1. Pre-pregnancy overweight women have different fecal microbiota compositions than normal and obese women at

phylum/genus levels. PCoA of the Bray-Curtis dissimilarity at the (A) phylum-level and (B) genus-level. Axes percentages

represent the amount of variation in the data explained by the axis, calculated from the PCoA eigen values. Axes ranges represent

the relative dissimilarity present between the samples.

https://doi.org/10.1371/journal.pone.0213733.g001
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the Sorensen metric was significant by maternal BMI (F = 1.5, p = 0.04) and delivery mode

(F = 1.92, p = 0.03) (S6 Fig).

Differential patterns of bacterial taxa

Women who were overweight prior to becoming pregnant had higher abundances of Bacter-
oides and lower abundances of Phascolarctobacterium than women who were normal weight

or obese prior to becoming pregnant. Women who were normal weight prior to becoming

pregnant had lower abundances of Acidaminococcus and Dialister but higher abundances of

Phascolarctobacterium than overweight and obese women (Table 4). At the phylum level, the

overweight women had higher Bacteroidetes than both normal weight and obese women, but

lower abundances of Firmicutes than obese women (Table 4).

Infants born to women who were normal weight prior to becoming pregnant had lower

abundances ofMegasphaera, but higher abundances of Escherichia-Shigella than infants born

to overweight or obese women. Streptococcus was less abundant in infants from women who

were overweight prior to pregnancy, and Staphylococcus was lower in infants from obese

Fig 2. Relationship between infant fecal bacterial membership and maternal/infant variables at the genus level. PCoA of the genus-level microbiota using the

Sorensen index comparing (A) maternal pre-pregnancy BMI category, (B) delivery mode, (C) breast milk in diet and (D) antibiotic exposure. Axes percentages

represent the amount of variation in the data explained by the axis, calculated from the PCoA eigen values. Axes ranges represent the relative dissimilarity present

between the samples.

https://doi.org/10.1371/journal.pone.0213733.g002
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Table 4. Significantly different taxa in the fecal microbiota by maternal pre-pregnancy BMI category.

Pregnant Women—Genus Normal Overweight Obese

Bacteroides 20.0 ± 7.2b 38.1 ± 21.7a 19.8 ± 8.2b

Phascolarctobacterium 3.0 ± 3.1a 1.7 ± 2.3c 2.3 ± 3.1b

Acidaminococcus 0.0006 ± 0.002b 2.4 ± 6.7a 1.9 ± 4.8a

Dialister 0.7 ± 1.0c 1.1 ± 1.6b 1.7 ± 2.6a

Pregnant Women—Phylum

Bacteroidetes 29.5 ± 8.8b 49.3 ± 17.6a 30.2 ± 12.1b

Firmicutes 49.5 ± 11.1ab 37.6 ± 15.0b 52.7 ± 14.0a

Infants—Genus

Megasphaera 0.09 ± 0.2b 6.0 ± 19.0a 9.5 ± 21.5a

Streptococcus 7.0 ± 9.2a 0.9 ± 1.2b 2.6 ± 4.1ab

Staphylococcus 5.3 ± 9.4a 2.1 ± 2.5ab 0.7 ± 1.4b

Acidaminococcus 0.0006 ± 0.002b 0.0006 ± 0.002b 3.4 ± 13.6a

Escherichia-Shigella 28.1 ± 28.3a 19.9 ± 20.1b 17.7 ± 24.1c

Akkermansia 0.004 ± 0.004b 0.006 ± 0.009b 2.6 ± 9.7a

Infants—Phylum

Verrucomicrobia 0.005 ± 0.004b 0.005 ± 0.008b 2.6 ± 9.7a

Values reported as mean (%) ± SD

Values in a row that do not contain the same superscript are significantly different, p<0.05

P-values are Benjamini-Hochberg corrected

https://doi.org/10.1371/journal.pone.0213733.t004

Table 5. Significantly different taxa in fecal microbiota by delivery mode and breastfeeding.

Infant—Genus Vaginal C-section

Megasphaera 8.4 ± 20.5 0.009 ± 0.02

Parabacteroides 4.8 ± 10.8 0.3 ± 0.9

Escherichia-Shigella 22.4 ± 26.4 19.9 ± 20.0

Akkermansia 0.01 ± 0.03 3.1 ± 10.8

Acidaminococcus 0.0005 ± 0.002 4.2 ± 15.1

Infant—Phylum

Verrucomicrobia 0.01 ± 0.03 3.1 ± 10.8

Infant—Genus Exclusively Breastfed Mixed Feeding

Escherichia-Shigella 24.1 ± 24.1 17.4 ± 18.2

Akkermansia 0.07 ± 0.3 2.6 ± 10.1

Acidaminococcus 0.002 ± 0.006 3.6 ± 14.1

Staphylococcus 3.8 ± 6.9 0.4 ± 1.0

Infant—Phylum

Verrucomicrobia 0.08 ± 0.3 2.6 ± 10.1

Infant—Genus Antibiotics Since Birth No Antibiotics

Megasphaera 0.04 ± 0.04 6.2 ± 18.0

Parabacteroides 0.01 ± 0.02 3.6 ± 9.5

Escherichia-Shigella 0.15 ± 0.3 24.0 ± 24.4

Acidaminococcus 0.007 ± 0.01 1.6 ± 9.2

Infant—Phylum

Bacteroidetes 0.9 ± 1.0 13.7 ± 20.4

Values reported as mean (%) ± SD

All comparisons, p<0.05 (Benjamini-Hochberg corrected)

https://doi.org/10.1371/journal.pone.0213733.t005
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women (Table 4). Infants born to obese women had significantly more Acidaminococcus and

Akkermansia in their fecal bacterial communities than infants born to normal or overweight

women. Vaginally-born infants had significantly higher abundances ofMegasphaera, Parabac-
teroides, and Escherichia-Shigella, but lower Acidaminococcus and Akkermansia than C-section

born infants (Table 5). Infants that exclusively consumed human milk had higher abundances

of Staphylococcus and Escherichia-Shigella, but lower abundances of Acidaminococcus and

Akkermansia than infants that consumed a mixed diet (Table 5).

After stratifying the infant data by BMI category, infants born vaginally to women who

were overweight prior to becoming pregnant had higher abundances of Bifidobacterium,

Megasphaera and Parabacteroides but lower abundances of unclassified Enterobacteriaceae,
Clostridium sensu stricto, Escherichia-Shigella, and Enterococcus (S4 Table). Because 4 of the 5

infants born vaginally to overweight women were exclusively breastfed, the same associations

were observed when comparing exclusively breastfed and mixed diet infants. In the obese

group, Megasphaera and Clostridium sensu stricto were more abundant, and Akkermansia and

Klebsiella were less abundant in the vaginally delivered infants compared to the c-section deliv-

ered infants (S5 Table). In contrast to babies born vaginally to women who were overweight

prior to becoming pregnant, the infants born vaginally to women who were obese prior to

becoming pregnant were just as likely to be mixed fed as they were to be exclusively breastfed.

Infants born to women who were obese prior to becoming pregnant and fed a diet of exclusive

breastmilk had higher abundances of Staphylococcus, but lower abundances ofMegasphaera,

Akkermansia and Klebsiella than infants fed a mixed diet. At the phylum level, the gut micro-

biota of infants born to women that were obese prior to becoming pregnant had a greater

abundance of Verrucomicrobia when delivered by c-section or fed a mixed diet (S5 Table).

Discussion

In this population of pregnant women and infants, we investigated the relationship between

maternal pre-pregnancy BMI and the gut microbiota of women during late pregnancy and of

their children during early infancy. The fecal bacterial communities of women who were over-

weight prior to becoming pregnant differed from those of women who were normal weight

and obese prior to becoming pregnant. The overweight women had a lower alpha diversity

and a high abundance of Bacteroides, which was likely the main driver of their overall commu-

nity differences measured by beta diversity, compared to the other BMI categories. The alpha

diversity of the infant microbiota did not differ by any of variables tested, but the beta diversity

of the infant microbiota was associated with delivery mode, human milk in the diet and antibi-

otic exposure when analyzed independently. However, only exclusive breastfeeding was signif-

icantly associated with the infant gut microbiota after stratifying by maternal pre-pregnancy

BMI category.

Women who were overweight prior to becoming pregnant tended to have a different

microbiota than normal weight and obese women. Although some studies have found no dif-

ferences in the gut communities of normal, overweight or obese women during pregnancy

[10, 45], our population of pre-pregnancy overweight women had a different community

structure at the genus and phylum levels than normal and obese women. This difference was

driven by the higher abundance of Bacteroides and Bacteroidetes in the feces of overweight

women compared to that of women in the other BMI categories. That the third trimester

microbiota of overweight women was different from the third trimester microbiota of normal

and obese women was surprising. A higher abundance of Bacteroides in obese women com-

pared to normal weight has been observed previously using fluorescent in-situ hybridization

[19]; however, there were no participants in the overweight category as reference. Our
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population of overweight women also had microbiota with lower richness, lower diversity and

higher evenness than that of normal weight or obese women as well as a significantly different

community composition. Our results in overweight pregnant women may be due to other var-

iables related to BMI, such as diet or lifestyle [46], which have also been shown to alter the

microbiome. Another possible reason for this difference could be gestational weight gain.

Excessive gestational weight gain has been associated with a gut microbiota dominated by Bac-

teroidetes rather than Firmicutes and a lower alpha diversity [20]. Thus, the overweight

women herein may have had a different microbiota because of higher gestational weight gain

compared to the normal weight or obese women. Unfortunately, this information was not col-

lected. Both gestational weight gain and maternal BMI have been associated with differences

in the child’s gut microbiota between 4 days and 2 years of age [47]. Shifts in gut microbiota

composition over the course of pregnancy due to hormonal, metabolic and immunological

changes [16] may affect what taxa establish in the infant gut. Some bacteria found in the infant

gut match bacteria found in their mother’s gut at the strain level [48, 49] suggesting there is a

partial transfer of gut bacteria from mother to child [22].

Since the microbiota influences weight gain and there is evidence of microbial transmit-

tance from mother to child, it is possible an obesogenic microbiota can be transferred from

mother to child. This, in turn, may increase the child’s risk of developing obesity. In our infant

population, we found that microbiota membership was affected by both maternal characteris-

tics and environmental exposures. Delivery mode and amount of breast milk in the diet were

associated with the infant fecal microbiota before adjustment, while maternal pre-pregnancy

BMI tended to be associated with the infant fecal microbiota. Many of the bacterial abun-

dances that differed by maternal pre-pregnancy BMI, delivery mode and breast milk in the

diet were shared, such as Escherichia-Shigella and Acidaminococcus. In children that are at risk

for malnourishment, Acidaminococcus has been shown to negatively affect growth [50]. These

associations suggest that maternal pre-pregnancy BMI category, delivery mode and amount of

breast milk in the diet all interact in similar ways with the infant microbiota. This may be due

to associations between the pre-pregnancy BMI, delivery mode and breastfeeding variables

themselves. For example, infants born to overweight and obese women have a higher risk of

developing childhood overweight/obesity and a 2–4 fold increased odds of being delivered via

C-section compared to normal weight women [51–53]. Moreover, obese mothers often have

difficulties breastfeeding due to insufficient milk yields in the first few weeks of lactation [54]

and are more likely to give their infant formula rather than breastmilk as a result [54, 55].

After adjusting for maternal pre-pregnancy BMI, shipping time, infant age, breast milk and

mode of delivery, delivery mode remained significantly associated with the beta-diversity (Sor-

enson index) of the infant gut microbiota. Additionally, vaginally-born infants had higher

abundance of Parabacteroides and Escherichia-Shigella. Others have found that vaginally born

infants have a higher proportion of their community in common with their mothers’ micro-

biota such as Bifidobacterium and Parabacteroides and Escherichia-Shigella [4]. Bifidobacter-
ium was significantly higher in our vaginally-born infants only in the overweight, but not

obese, category. This was related to the disparities in breastfeeding exclusivity between infants

born to overweight women versus those born to obese women with each mode of delivery cat-

egory. Regardless of maternal pre-pregnancy BMI status, 33.3% of c-section born infants were

exclusively fed human milk. In contrast, 80% of vaginally born infants of overweight women

and 50% of vaginally born infants of obese women were exclusively fed human milk. Infants

born to obese women, even if they are vaginally born, may be at a greater risk for allergies,

overweight/obesity and other chronic diseases if their gut microbiota lack of Bifidobacteria
[56].
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Breastfeeding impacts the abundances of several taxa, especially the genera Lactobacillus
and Bifidobacteria, which can utilize the oligosaccharides found in breast milk [4, 28, 29, 57].

Breastfeeding was not associated with the alpha- or beta-diversity of the infant microbiota

after adjustment for covariates, but breastfeeding was significantly associated with community

membership at the genus-level and composition at the phylum-level when stratifying by

maternal pre-pregnancy BMI. Compared to the relationship we found between delivery mode

and the microbiota, we saw similar associations between BMI category and Bifidobacterium
abundance when comparing exclusively breastfed infants to mixed-fed infants. However, this

is likely due to collinearity between delivery mode and breastfeeding within the overweight

group [4]. Others have shown that exclusive breastfeeding alters the microbiota compared to

mixed feeding [4, 58] and reduces the risk of overweight/obesity in both childhood and adult-

hood [59].

Infant age is associated with changes to the microbiota for several reasons: alterations to the

gut environment, allowing for a shift from a high abundance of facultative anaerobes to obli-

gate anaerobes over time; alterations in dietary intake; and alterations in gut transit time [44].

The full analysis and the sensitivity analyses of infants 9 days old or less and infants 18 days old

or less led to similar conclusions for alpha diversity in infant fecal bacterial communities.

Although, beta-diversity results were similar for the full population and the subset of infants

2–18 days of age, these results were not similar for the subset of infants 2–9 days of age. This is

likely due to decreasing sample size which reduced the number of infants in the obese category

to 31%, those in the overweight category to 45% and those in the normal category to 75% of

their original size.

There are several limitations to this study. One limitation is the sample collection method.

Women collected the samples in their home and shipped the samples to the lab allowing the

sample to remain at non-ideal temperatures for an average of 4 days before storage at -80˚C.

In general, it is known that the methods used to collect, store, extract and amplify samples

have effects on microbiome data [60–62]. These conditions may affect the relative abundances

of the microbiota, but community differences across samples have been shown to be preserved

regardless of storage method [61, 63, 64]. Thus, comparisons across groups within our study

population are valid. The BMI and breastfeeding variables relied on self-reported data from

the women. The pre-pregnancy self-report of height and weight has been reported to be valid

[39], but other studies have found that self-reported height and weight can be prone to error

[65]. The measure of breastmilk in the infant diet also relied on self-report [40], so there may

be measurement errors in the reported values. Furthermore, because of the relatively limited

sample size and collinearity among variables, we were not able to test some associations, such

as breastfeeding exclusivity and mode of delivery within the normal weight participants, in

this data set. For instance, if an infant was born vaginally, s/he was also likely to be exclusively

fed human milk in this study population. Antibiotic use by the infant was included in the anal-

ysis because antibiotic use has been shown to alter the gut microbiota [66]. However, we did

not include maternal antibiotic use during pregnancy or parturition in this analysis, and these

exposures may also impact the pregnancy and infancy gut microbiotas. Strengths of this study

include the enrollment of participants of low socioeconomic status, a factor which has been

shown to reduce gut microbial diversity in adults [67].

Conclusion

Maternal pre-pregnancy BMI is associated with the pregnancy fecal bacterial community and

tends to be associated with the early infancy fecal bacterial community. Other maternal char-

acteristics and environmental exposures were also associated with the microbiota during early

Pre-pregnancy body mass index and gut microbiota

PLOS ONE | https://doi.org/10.1371/journal.pone.0213733 March 18, 2019 13 / 19

https://doi.org/10.1371/journal.pone.0213733


infancy. Factors such as pre-pregnancy BMI, C-section delivery and formula feeding, affect the

infant microbiota and have also been shown to increase the risk of developing adverse health

outcomes such as childhood overweight/obesity [68] and allergies/asthma [69–71]. The health

effects associated with these factors may partially be explained by their effects on the micro-

biota. Other characteristics of the infant microbiome, such as species, strain, or functional dif-

ferences, are important aspects of microbiota-host interactions and may give further insight

on the roles the microbiota plays in childhood development. Future work will determine if

these bacterial differences persist as the child ages as well as describe associations between the

microbiota and later health outcomes.
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S1 Table. Infant fecal microbiota alpha diversity by infant age, sex, mode of delivery and
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S2 Table. P-values of infant fecal microbiota alpha diversity by delivery mode and breast-

feeding stratified by BMI category.

(PDF)

S3 Table. Sensitivity of infant fecal microbiota alpha diversity to infant age.

(PDF)
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S5 Table. Significantly different taxa by delivery mode and breastfeeding in the gut micro-
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S1 Fig. The fecal bacterial community structure of pregnant women differs significantly

from that of infants. PCoA of the microbiota for all samples at the (A) phylum-level using

Bray-Curtis dissimilarity, and at the genus-level using (B) Sorensen index and (C) Bray-Curtis

Dissimilarity. Axes percentages represent the amount of variation in the data explained by the

axis, calculated from the PCoA eigen values. Axes ranges represent the relative dissimilarity

present between the samples.

(TIF)

S2 Fig. Bacterial community membership does not differ in pregnant women by pre-preg-

nancy BMI category. PCoA of the genus-level microbiota using Sorensen index. Axes percent-

ages represent the amount of variation in the data explained by the axis, calculated from the

PCoA eigen values. Axes ranges represent the relative dissimilarity present between the sam-

ples.

(TIF)

S3 Fig. Relationship between infant fecal bacterial structure at the genus level and mater-

nal/infant variables. PCoA of the genus-level microbiota by Bray-Curtis dissimilarity compar-

ing (A) maternal pre-pregnancy BMI category, (B) delivery mode, (C) breast milk in diet and

(D) antibiotic exposure. Axes percentages represent the amount of variation in the data

explained by the axis, calculated from the PCoA eigen values. Axes ranges represent the rela-

tive dissimilarity present between the samples.

(TIF)
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S4 Fig. Infant fecal microbiota stratified by maternal overweight and obese categories.

PCoA of the infant gut microbiota by breastfeeding status of the (A) overweight group using

the Sorensen index at the genus level (B) obese group using the Sorensen index at the genus

level (C) overweight group using Bray-Curtis dissimilarity at the phylum level (D) obese group

using Bray-Curtis dissimilarity at the phylum level. Axes percentages represent the amount of

variation in the data explained by the axis, calculated from the PCoA eigen values. Axes ranges

represent the relative dissimilarity present between the samples.

(TIF)

S5 Fig. Sensitivity analysis of the infant microbiota, including infants from 2 to 9 days old.

PCoA of the genus-level microbiota by Sorensen dissimilarity comparing (A) maternal pre-

pregnancy BMI category, (B) delivery mode, (C) breastfeeding status and (D) sex. Axes per-

centages represent the amount of variation in the data explained by the axis, calculated from

the PCoA eigen values. Axes ranges represent the relative dissimilarity present between the

samples.

(TIF)

S6 Fig. Sensitivity analysis of the infant microbiota, including infants from 2 to 18 days

old. PCoA of the genus-level microbiota by Sorensen dissimilarity comparing (A) maternal

pre-pregnancy BMI category, (B) delivery mode, (C) breastfeeding status and (D) sex. Axes

percentages represent the amount of variation in the data explained by the axis, calculated

from the PCoA eigen values. Axes ranges represent the relative dissimilarity present between

the samples.

(TIF)
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