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Abstract

Intestinal microbiota changes may be involved in the development of metabolic syndrome (MetS), which is a multicomponent disorder frequently associated
with obesity. The aim of this study was to test the effect of consuming two healthy diets: a Mediterranean diet and a low-fat high-carbohydrate diet, for 2 years
in the gut microbiota of MetS patients and those in the control group. We analyzed the differences in the bacterial community structure between the groups after
2 years of dietary intervention (Mediterranean or low-fat diet) through quantitative polymerase chain reaction using primers, targeting specific bacterial taxa.
We observed, at basal time, that the abundance of Bacteroides, Eubacterium and Lactobacillus genera is lower in the control group than in MetS patients, while
Bacteroides fragilis group, Parabacteroides distasonis, Bacteroides thetaiotaomicron, Faecalibacterium prausnitzii, Fusobacterium nucleatum, Bifidobacterium longum,
Bifidobacterium adolescentis, Ruminococcus flavefaciens subgroup and Eubacterium rectale are depleted in MetS patients (all P values b.05). Additionally, we found
that long-term consumption of Mediterranean diet partially restores the population of P. distasonis, B. thetaiotaomicron, F. prausnitzii, B. adolescentis and
B. longum in MetS patients (all P values b.05). Our results suggest that the Mediterranean diet could be a useful tool to restore potentially beneficial members of
the gut microbiota, although the stability of these changes over time still remains to be assessed.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The microbial communities harbored in the human intestine are
involved in innate and adaptative immunity, as well as in controlling
energy balance; they act collectively as an organ that is fully integrated in
the hostmetabolism [1]. Despitemounting evidence in animalmodels for
the role of the gutmicrobiota in bodyweight and obesity [2–4], studies in
humans are scarce and causality is yet to be established.While a balanced
microbiota confers benefits to the host, microbial imbalances have been
associated with metabolic disorders such as dyslipidemia, insulin
resistance and type 2 diabetes [5,6]. In fact, some studies have
suggested that changes in the intestinal microbiota may trigger
pathogenic mechanisms that promote inflammation, insulin resistance
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and the development of metabolic syndrome (MetS) [7,8]. Moreover, the
loss of immunological tolerance associated with changes in the
Firmicutes/Bacteroidetes ratio seems to play a significant role in the
development of obesity and eventually the initiation of MetS [7].

The shaping of the gut microbiome is currently considered as
a therapeutic target, since specific changes in the gut microbial
community might counteract the development of obesity and MetS
[9]. Although the adult human gut microbiota community is relatively
stable over long periods of time [10], dietary interventions can
influence its composition and could potentially be used as therapeutic
tools to alleviate and treat conditions triggered by microbial
imbalances [11]. In fact, it has already been shown that the
consumption of a high-fat high-protein diet increases levels of
Bacteroides versus Prevotella, which is more abundant after high-
carbohydrate diets [12]. Moreover, the inverse relationship between
Prevotella and Bacteroides has been reproduced in studies comparing
the microbiota of subjects from agrarian societies with those from
industrialized societies [13,14]. In addition, the consumption of diets
higher in fruit, vegetables and fiber is linked to increased microbial
richness, at either the taxonomic level or the gene level [15]. The gut
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microbiome can even respond to short-term modifications of
macronutrient content in the diet, although it quickly returns to
baseline composition after the intervention ceases [16]. It is therefore
hypothesized that only long-term dietary interventions can substan-
tially impact the microbiota [11].

In this study, our aim was to evaluate the differences in the
bacterial community structure of the intestinal microbiota between
MetS patients anda groupof individualswithoutMetS and to test the effect
of the long-term consumption of two healthy diets: a Mediterranean diet
and a low-fat high-carbohydrate diet, in restoring the gut microbiota
composition.

2. Materials and methods

2.1. Study subjects

The current work was conducted in a subgroup of 239 patients within the
CORDIOPREV study (Clinical Trials.gov.Identifier: NCT00924937), an ongoing prospec-
tive, randomized, opened and controlled trial in patients with coronary heart disease
(CHD), who had their last coronary event over 6 months before enrolling in two
different dietary models (Mediterranean and low-fat) over a period of 5 years, in
addition to conventional treatment for CHD [17]. All patients gave written informed
consent to participate in the study. The trial protocol and all amendments were
approved by the local ethics committees, following the Helsinki declaration and good
clinical practice.

The 239 patients were divided into two groups: the first group consisting of 138
MetS patients was selected according to the National Cholesterol Education Program’s
Adult Treatment Panel III criteria for MetS [18] with increased abdominal fat waist
circumference (N102 cm for males and N88 cm for females), high triglycerides (TG;
≥150 mg/dl), low high-density lipoprotein cholesterol (HDL-C; b40 mg/dl for males
and b50 mg/dl for females), high fasting glucose (≥100 mg/dl), systolic arterial blood
pressure of ≥130 mmHg and/or diastolic arterial blood pressure of ≥85 mmHg. The
other group consisted of 101 subjects without MetS. The baseline characteristics of the
subjects in the study are shown in Supplemental Table 1.

2.2. Study design

The study design has been previously described [19]. Briefly, participants of each of
the two groups were randomized to receive two diets: a Mediterranean diet and a low-
fat diet. The composition was as follows: (a) low-fat high-carbohydrate diet: 28% fat
(12% monounsaturated, 8% polyunsaturated and 8% saturated) and (b) Mediterranean
diet: 35% fat (22% monounsaturated, 6% polyunsaturated and 7% saturated).
Furthermore, to ensure that the main fat source of the Mediterranean diet (olive oil)
was identical for all patients in this group, the olive oil was given to the participants by
the research team. Food packs, including low-fat foods (cereals, biscuits, pasta, etc.) of
similar cost, were provided for the patients whowere randomized to the low-fat group.
Diet assessment was performed using a validated 14-item questionnaire to assess
adherence to the Mediterranean diet [20] and a similar 9-point score to assess
adherence to low-fat diet at baseline before the start of the dietary intervention and
yearly follow-up visits.

2.3. Clinical plasma parameters

Blood was collected in tubes containing EDTA to give a final concentration of 0.1%
EDTA at baseline before the start of the dietary intervention and yearly follow-up visits.
The plasma was separated from the red cells by centrifugation at 1500g for 15 min at
4°C. Analytes determined in frozen samples were analyzed centrally by laboratory
investigators of the Lipid and Atherosclerosis Unit at the Reina Sofia University Hospital,
who were unaware of the interventions. Lipid variables were assessed with a DDPPII
Hitachi modular analyzer (Roche) using specific reagents (Boehringer Mannheim).
Plasma TG and cholesterol concentrations were assayed by enzymatic proce-
dures [21,22]. HDL-C was measured by the precipitation of a plasma aliquot with
dextran sulfate-Mg2+, as described by Warnick et al. [23]. Low-density lipoprotein
cholesterol was calculated using the following formula: plasma cholesterol−(HDL-
C+large TRL-C+small TRL-C). Therefore, glucose determination was performed by the
hexokinase method.

2.4. DNA extraction from fecal samples

To collect the fecal samples, we gave the patients a box with carbonic snow and a
sterile plastic bottle with a screw cap to keep the frozen sample. Once delivered to the
laboratory staff, the sample was stored at −80°C until microbial DNA was extracted.
Hence, thiswas performed using the QIAampDNAKit StoolMini Kit Handbook (Qiagen,
Hilden, Germany) following the manufacturer’s instructions. This protocol was
optimized for a 180- to 220-mg sample. Consequently, bacterial DNA was quantified
using with a Nanodrop ND-1000 v3.5.2 spectrophotometer (Nanodrop Technology,
Cambridge, UK); the samples were stored at −20°C.
2.5. Quantification of the bacterial composition by real-time quantitative polymerase
chain reaction analysis

Specific primers for 16S rRNA gene in different bacterial species (Supplemental
Table 2) were used to characterize the fecal microbiota using real-time quantitative
polymerase chain reaction (PCR). We selected the bacterial species on the basis of
finding specific primers and for being species with known functions. Each PCR reaction
contained 5 ng of fecal DNA and 2 μl of each primer at a concentration of 5 pmol/μl
using the iQ SYBR Green Kit (Bio-Rad Laboratories, Inc., Hercules, CA, USA), in an iQ5
real-time PCR detection system thermocycler (Bio-Rad Laboratories, Inc., Hercules, CA,
USA). The reaction was incubated at 95°C for 8 min, followed by 40 cycles of 1 min at
95°C, 30 s at 60°C and 20 s at 72°C.

In order to assess the specificity of the amplifications, PCR products were run on an
agarose gel at 1.5% in a TBE buffer and the DNA bands were excised from the agarose gel
for subsequent sequencing, which was performed at the Central Service for Research
Support of the University of Cordoba. In addition, the nucleotide sequences were
compared with known sequences in the GenBank database using the BLAST algorithm.
Moreover, the specificity of PCRamplificationswas checked ineachPCR reactionbyamelting
curve program (60–95°C with a heating rate of 0.5°C/s and a continuous fluorescence
measurement). The relative abundance of each bacterial species was calculated using
the total bacterial abundance as a reference: the first two pairs of universal bacteria primer
were used and then both were combined by the BestKeeper method to obtain an accurate
reference value [relative abundance=2−(Ct, target specie−Ct, reference)] [24].

2.6. Statistical analysis

We used PASW Statistics, Version 18 (Chicago, IL, USA) to perform the statistical
analysis. The normal distribution of variables was assessed using the Kolmogorov–
Smirnov test. When variables followed a normal distribution (metabolic variables),
one-factor analysis of variance was used to compare the baseline metabolic variables
between the MetS and the non-MetS groups. When variables did not follow a normal
distribution, we used nonparametric methods. The Mann–Whitney U test analysis was
used to compare the statistically significant differences in the relative abundance of the
bacterial species between MetS patients and the group without MetS. The statistically
significant microbiota changes by diet were assessed by theWilcoxon signed-rank test.
A study of the relationship among parameters was also carried out using Pearson’s
linear correlation coefficient. All data presented are expressed as mean±S.E.M. A
P value b0.05 was considered significant.

3. Results

3.1. Baseline characteristic of the study participants

No significant differences in age were observed among the groups.
As expected, the MetS group had higher waist circumference, TG,
glucose and blood pressure and lowerHDL-C plasma levels inmetabolic
variables than the non-MetS group. No significant differences were
observed between the patients assigned to Mediterranean or low-fat
diets for either MetS or non-MetS groups (Supplemental Table 1).

3.2. MetS and gut microbiota

Relative abundance of Bacteroides, Eubacterium and Lactobacillus
genera at basal time was higher in the MetS patients than in the non-
MetS group (Pb.05). We also analyzed the differences in the relative
abundance of 18 bacterial species belonging to the most abundant
phyla and genera, known to be present in human gut intestinal
microbiota in both groups (Fig. 1). We observed that the relative
abundance of Bacteroides fragilis group, Parabacteroides distasonis,
Bacteroides thetaiotaomicron, Faecalibacterium prausnitzii, Fusobacter-
ium nucleatum, Bifidobacterium longum, Bifidobacterium adolescentis,
Ruminococcus flavefaciens subgroup and Eubacterium rectale, at basal
time, was lower in MetS patients than in the control subjects (Pb.05).

3.3. Relationship between MetS-related variables and the gut microbiota

We observed a negative relationship between the waist circum-
ference and the relative abundance of B. thetaiotaomicron, P. distasonis,
F. prausnitzii, B. longum, R. flavefaciens subgroup and B. adolescentis
(R=−0.162, P=.022; R=−0.213, P=.002; R=−0.294, Pb.001;
R=−0.297, Pb.001; R=−0.176, P=.013; R=−0.211, P=.003). We
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Fig. 1. Differences in the gut microbiota composition of MetS patients. Values are the mean±S.E.M. The statistically significant differences between each group were tested by the
Mann–Whitney test.
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also observed a positive relationship between the c-HDL plasma levels
and the relative abundance of B. fragilis group, B. thetaiotaomicron,
F. prausnitzii, B. longum, R. flavefaciens subgroup, B. adolescentis and
F. nucleatum (R=0.146, P=.039; R=0.265, Pb.001; R=0.296, Pb.001;
R=0.190, P=.007; R=0.163, P=.021; R=0.141, P=.046; R=0.140,
P=.048). Furthermore, there was a negative relationship between the
TG plasma levels and the relative abundance of B. fragilis group, B.
thetaiotaomicron, P. distasonis, F. prausnitzii, B. longum, R. flavefaciens
subgroup and B. adolescentis (R=−0.175, P=.013; R=−0.211, P=
.003; R=−0.200, P=.005; R=−0.279, Pb.001; R=−0.145, P=.040;
R=−0.275, Pb.001; R=−0.174, P=.014). In addition a negative
relationship exists between the glucose plasma levels and the
relative abundance of P. distasonis and B. longum (R=−0.161, P=
.022; R=−0.145, P=.040). Finally, there was also a negative
relationship between the systolic blood pressure and the relative
abundance of B. longum (R=−0.167, P=.018) (Supplemental Fig. 1).
Table 1
Diet-induced relative abundance fold change in microbiota composition in the panel of
bacterial species.

Experimental group Non-MetS group MetS group

Bacterial species/diet Low fat Mediterranean Low fat Mediterranean

P. distasonis 0.87±0.29 ⁎ 1.70±0.23 1.79±0.22 1.75±0.22 ⁎

B. thetaiotaomicron 1.38±0.25 1.37±0.20 1.29±0.19 1.58±0.19 ⁎

F. prausnitzii 1.47±0.28 1.63±0.23 1.29±0.21 1.78±0.22 ⁎

B. adolescentis 1.11±0.34 1.50±0.28 1.40±0.26 2.26±0.27 ⁎

B. longum 1.54±0.33 1.16±0.27 1.58±0.25 2.01±0.25 ⁎

E. rectale 1.08±0.25 1.90±0.21 ⁎ 1.39±0.19 1.23±0.20
B. fragilis group 1.51±0.26 1.65±0.21 1.17±0.20 1.37±0.20
R. flavefaciens subgroup 1.32±0.29 1.64±0.24 1.10±0.22 1.63±0.22
F. nucleatum 1.32±0.27 1.50±0.22 1.10±0.21 1.04±0.21

Fold change normalized versus relative abundance values at baseline. The statistically
significant microbiota changes by diet were assessed by theWilcoxon signed-rank test.
⁎ Pb.05.
3.4. Mediterranean diet affects microbiota composition

In order to assesswhether diet significantly impacts themicrobiota
profile of MetS patients, we analyzed bacterial composition after
2 years of consumption of a Mediterranean or a low-fat diet (Table 1).
We observed that Mediterranean diet induced a statistically signifi-
cant increase in the abundance of P. distasonis, B. thetaiotaomicron,
F. prausnitzii, B. adolescentis and B. longum (Pb.05) in the MetS, but not
in the non-MetS group. By contrast, we observed a statistically
significant increase in the abundance of E. rectale (Pb.05) in the non-
MetS, but not in the MetS group. Additionally, the consumption of the
low-fat diet for 2 years decreased the abundance of P. distasonis
(Pb.05) in the non-MetS group, which remained unchanged in the
MetS patients group.
We also observed a weak but significant relationship between the
Mediterranean diet score after 2 years of dietary intervention and the
abundance of F. prausnitzii (R=0.158, P=.028), as well as the changes
in the abundance of B. adolescentis (R=0.147, P=.040).
4. Discussion

Our data show that the Bacteroides, Eubacterium and Lactobacillus
genera were significantly increased, while B. fragilis group,
P. distasonis, B. thetaiotaomicron, F. prausnitzii, F. nucleatum, B. longum,
B. adolescentis, R. flavefaciens subgroup and E. rectale were decreased
significantly in MetS patients compared with the non-MetS group.
More interestingly, our results suggest that long-term consumption of
Mediterranean diet increases the abundance of P. distasonis,
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B. thetaiotaomicron, F. prausnitzii, B. adolescentis and B. longum in the
MetS patients, although MetS persists.

Several studies have shown evidence that alterations in gut
microbiota may lead to obesity andMetS, directly or as a consequence
of the disturbances in the gut microbiota that causes the “low-grade”
inflammation that may promote the development of MetS [25,26]. In
this regard, we note that our results show a negative correlation between
the abundance of B. fragilis group, P. distasonis, B. thetaiotaomicron,
F. prausnitzii, F. nucleatum, B. longum, B. adolescentis, R. flavefaciens
subgroup and E. rectale with plasma levels of glucose and TG and a
positive correlation with plasma levels of HDL. These results further
support the idea that gut microbiota acts collectively as a fully integrated
organ in the hostmetabolism [1]. However, it alsomodulates host energy
and lipid metabolism [4]. Thus, changes in the intestinal microbiota may
triggerpathogenicmechanismsonce obesity is established; this promotes
insulin resistance and the development of MetS [7–9].

Moreover, the observed reduction in MetS patients in the abundance
of several bacterial species within the Bacteroides and Ruminococcus
genera with important saccharolytic activity, such as B. fragilis group,
P. distasonis, B. thetaiotaomicron and the R. flavefaciens subgroup [27–29],
suggests a reduction in carbohydrate degradation capacity in MetS
patients, which may also cause a reduction in propionate and acetate
production [30,31]. The latter point is particularly relevant in this context,
as a reduction of acetate levels in the gut may also reduce the abundance
of beneficial bacteria (as observed in our study) such as F. prausnitzii and
E. rectale. Hence, this bacteria consume acetate and produce butyrate
[32,33], in addition to the decrease in E. rectale, F. nucleatum and
F. prausnitzii, which directly degrade carbohydrate to produce butyrate.

Although previous studies have described an individual-specific
microbiota with high stability over time [10] and resistance to
perturbations [34,35], recent research indicates that changes in the
gut microbiota composition may occur after dietary interventions
[12,16,36,37] and that long-term periods following a specific diet can
affect the microbiota in a substantial way [11]. Our results further
strengthen this hypothesis, as the consumption of a Mediterranean
diet over 2 years resulted in a significant modification of the gut
microbiota composition of MetS patients.

Previous studies have shown that specific foods consumed in the
traditional Mediterranean diet have an influence on the gut microbi-
ota composition [38,39]. Antioxidant phenolic compounds are
consumed in the Mediterranean diet through different products
such as fresh fruit, vegetables, redwine and olive oil. In fact, it has been
shown that red wine consumption increases the growth of Entero-
coccus, Prevotella, Bacteroides and Bifidobacterium genera abundance
in healthy humans [37]. In addition, a study performed using culture
fermentation systems reflective of the distal region of the human large
intestine showed that a pomegranate product significantly enhances
the growth of Bifidobacteria and Lactobacilli [40], suggesting that the
fruit, another source of antioxidants in Mediterranean diet, may also
influence gut microbiota composition.

In line with this, our study showed that the consumption of a
Mediterranean diet, containing phenolic-compound-rich foods such
as fresh fruit, vegetables, red wine and olive oil, is more effective in
increasing the levels of bacterial species found to be lower in MetS
patients, such as P. distasonis, B. thetaiotaomicron, F. prausnitzii,
B. adolescentis and B. longum. Consequently, the consumption of a
low-fat diet that ismore abundant inwhole grains significantly lowers
in sources of phenolic compounds and lowers in fiber intake than the
Mediterranean diet, which did not result in a similar increase in the
abundance of these bacteria. Hence, this was evidenced by the
nutritional assessment of the diet compliance by surveys. Moreover,
the positive correlation between Mediterranean diet score and the
abundance of F. prausnitzii and B. adolescentis further supports the
hypothesis that Mediterranean diet induces significant changes in gut
microbiota composition.
Additionally, in termsof fat percentage, our study supports the idea that
the consumptionof dietwith ahighpercentage of fat asMediterraneandiet
in comparisonwith the low-fat diet administered increases the abundance
of bile resistance taxa such asBacteroides [16]. However, this is because the
intake of fat increases the secretion of bile acids [41].

Moreover, it is particularly important due to the fact that the
consumption of Mediterranean diet increased the abundance of the
Bacteroides genus member B. thetaiotaomicron and F. prausnitzii,
which suggest that the consumption of this diet may increase or
maintain a microbiota with antiinflammatory capability [42]. Thus,
this is in agreement with the antiinflammatory effects associatedwith
the consumption ofMediterraneandiet consumption [43]. Overall, our
study showed that the consumption of Mediterranean diet influenced
the gut microbiota composition mainly in the MetS patients. This was
presumed by the dysbiosis observed in this population compared
to the non-MetS, suggesting that its consumption may help in
maintaining the gut microbiota homeostasis, which is particularly
important in conditions of an alteration of microbiota such as obesity
and MetS. Hence, this could contribute to explaining the low rates of
cardiovascular mortality found in Southern European Mediterranean
countries, in comparison with other Western populations [44].

However, our study has the limitation that the relationship between
cardiovascular risk factors andmicrobiota species, although significant,
was low. Moreover, the long-term consumption of a Med diet partially
restores the alteration in the gut microbiota composition observed in
MetS patients, without the disappearing of the syndrome, which
suggests that longer periods of Med diet consumption may be needed.

In conclusion, our results suggest that Mediterranean diet could be
a useful tool in manipulating the gut microbiota. Thus, further studies
will be required to fully understand the effect of the Mediterranean
diet in shaping gut microbiota and its effect on human health.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jnutbio.2015.08.011.
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