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Approximately 15 million preterm births at less than 37 weeks 
of gestation occur annually worldwide1. Preterm birth (PTB) 
remains the second most common cause of neonatal death 

across the globe, and the most common cause of infant mortality 
in middle- and high-income economies2. The consequences of PTB 
persist from early childhood into adolescence and adulthood3,4. In 
the United States, striking population differences with respect to PTB 
exist, with women of African ancestry having a substantially larger 
burden of risk. The estimated annual cost of PTB in the United States 
alone is over US$26.2 billion5. Despite these statistics, there remains 
a paucity of effective strategies for predicting and preventing PTB.

Although maternal and fetal genetics, and gene–environment 
interactions, clearly play roles in determining the length of gesta-
tion, environmental factors, including the microbiome, are the 

most important contributors to PTB, particularly among women of 
African ancestry6. Microbe-induced inflammation resulting from 
urinary tract infection, sexually transmitted infections, including 
trichomoniasis, or bacterial vaginosis is thought to be a cause of 
PTB7,8. Ascension of microbes7,9 from the lower reproductive tract 
to the placenta, fetal membranes and uterine cavity, and hematog-
enous spread of periodontal pathogens from the mouth, have also 
been invoked to explain the up to 40–50% of preterm births that are 
associated with microbial etiologies10,11.

A homogeneous Lactobacillus-dominated microbiome has 
long been considered the hallmark of health in the female repro-
ductive tract. In contrast, a vaginal microbiome with high species 
diversity, as observed with bacterial vaginosis, has been associated 
with increased risk for acquisition and transmission of sexually 
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transmitted infections, PTB and pelvic inflammatory disease12–15. 
However, many asymptomatic healthy women have diverse vaginal 
microbiota. More refined approaches are needed to assess risk, pro-
mote health, and prevent and treat disease16–21.

Recent reports of the microbiome in pregnant women22–39 have 
suggested that the composition of the vaginal microbiome has a 
significant population-specific impact on PTB risk. Several studies 
that focused on populations predominantly of European descent22–25 
have associated Lactobacillus crispatus with a lower risk of PTB, and 
the finding was replicated in a cohort of predominantly African 
descent25. As first reported by Ravel et  al.16, and subsequently 
confirmed in other studies21,40, the vaginal microbiome profiles 
of women of African and European ancestry differ significantly. 
Although distinct taxa have been associated with PTB in women 
of African ancestry in some studies25,26, others have not found sig-
nificant associations27,30. Women of African descent are less likely to 
exhibit vaginal lactobacilli, frequently have vaginal L. crispatus pre-
dominance and are more likely to exhibit increased vaginal micro-
bial diversity16,21. Consequently, population-specific studies may be 
required to assess the broad impacts of the vaginal microbiome on 
risk of PTB and to identify contributing taxa that may be carried by 
only a small subset of women.

In the present study, we report a community resource that 
includes samples collected longitudinally during 1,572 pregnancies 
of women from diverse ancestries, and omics data generated from 
samples collected from 597 pregnancies in a collaborative effort 
under the umbrella of the National Institutes of Health’s integrative 
Human Microbiome Project (iHMP)41. Furthermore, we provided 
an analysis of the longitudinal, comprehensive, multi-omic profiling 
of vaginal samples from 45 women who experienced spontaneous 
PTB and 90 case-matched controls, in a cohort of women of pre-
dominantly African ancestry. In an initial analysis of this dataset, 
which represents one of the largest and most comprehensive studies 
of the vaginal microbiome to date, we identified vaginal microbial 
signatures in women who went on to experience PTB.

Results
The Multi-Omic Microbiome Study: Pregnancy Initiative. The 
longitudinal iHMP study, the Multi-Omic Microbiome Study: 
Pregnancy Initiative (MOMS-PI) includes a total of 1,572 pregnan-
cies, with 992 pregnancies from clinics associated with the Research 
Alliance for Microbiome Science (RAMS) Registry, based at Virginia 
Commonwealth University (VCU) in Virginia, and 580 pregnancies 
from sites associated with the Global Alliance to Prevent Prematurity 
and Stillbirth (GAPPS) in Washington State. The resource features 
two comprehensive datasets of integrated microbiome and host 
functional properties measured longitudinally in pregnancy and 
the perinatal period (Fig. 1): (1) the MOMS-PI Preterm Birth (PTB) 
study dataset generated from a case–control study of 45 women 
predominantly of African ancestry, who delivered spontaneously 
preterm, and 90 case-matched women who delivered at term; and 
(2) the MOMS-PI Term Birth (TB) study dataset generated from 
an ethnically diverse retrospective cohort study of 90 women, who 
delivered at term or early term42. From a selection of 12,039 samples 
from 597 pregnancies, we generated: (1) 16S ribosomal RNA (rRNA) 
taxonomic profiles from 6,452 samples from pregnant women and 
2,753 samples from neonates; (2) metagenome profiles from 930 
samples from pregnant women and 146 samples from neonates; 
(3) metatranscriptome profiles from 297 samples from pregnant 
women; (4) cytokine profiles from 1,223 samples from pregnant 
women and 173 samples from neonates; and (5) lipid profiles from 
63 samples from pregnant women. In the overall MOMS-PI study, 
we collected a total of 206,437 samples from pregnant women and 
their neonates, which have been archived in the RAMS Registry (see 
ramsregistry.vcu.edu) (Fig. 1c). Comprehensive health history and 
outcome data were also collected longitudinally.

Vaginal microbiome profiles show PTB-associated trends. In the 
present study, we focus our analysis on a comprehensive multi-omic 
profiling of vaginal samples in the MOMS-PI PTB study. We ana-
lyzed 45 single gestation pregnancies that met the criteria for spon-
taneous PTB (23–36 weeks 6 days of gestational age) and 90 single 
gestation pregnancies that extended through term (≥39 weeks) to 
avoid issues possibly associated with early term births43–45. The TB 
controls in the MOMS-PI PTB study were case matched to the PTB 
group (2TB:1PTB) for age, race and annual household income. On 
average, the earliest samples were collected at 18 weeks of gesta-
tion, and the mean number of sampling visits per participant was 
7. The respective mean and median gestational age at delivery was 
34, 0/7 and 35, 6/7 for the PTB group and 40, 0/7 and 39, 6/7 for 
the TB group.

The cohort predominantly comprised women of African ances-
try (~78%), with a median annual income of less than US$20,000 
and an average age of 26 years (Table 1, and see Supplementary 
Table 1). Microbiome profiles of the first vaginal samples collected 
at study enrollment (Fig. 2a, and see Extended Data Fig. 1) were 
generated by 16S rRNA taxonomic analysis. For vaginal samples, 
the dominant bacterial taxon is one clinically meaningful measure 
by which to stratify samples16,46. Women who went on to deliver at 
term were more likely to exhibit L. crispatus predominance in the 
vaginal microbiome (P = 0.014, Fig. 2a,b, and see Supplementary 
Table 2a and Extended Data Fig. 1), paralleling earlier observa-
tions17,22–25. A Markov chain analysis to assess vagitype changes 
throughout pregnancy did not reveal statistically significant differ-
ences in transition rates between case and control groups. However, 
point estimates of probabilities of transition to the BV-associated 
bacterium 1 (BVAB1) vagitype were higher in the PTB group, 
whereas point estimates of transition to the L. crispatus group were 
higher in the term group, although the differences failed to reach 
significance (see Supplementary Table 2b).

Overall diversity was increased in samples from women who 
would go on to experience PTB (see Extended Data Fig. 2), and 
12 taxa showed a significant difference in abundance between the 
PTB and the TB groups (Fig. 2b). L. crispatus was greatly reduced in 
PTB samples, and several other taxa, including BVAB1, Prevotella 
cluster 2 and Sneathia amnii, were more abundant in PTB samples 
(q < 0.05; Fig. 2b, and see Supplementary Tables 4 and 5). Prevotella 
cluster 2 comprises several closely related taxa of that genus47, 
including Prevotella timonensis and Prevotella buccalis. Through an 
analysis of samples collected from the 31 PTB and 59 TB subjects 
who had samples collected early (6–24 weeks of gestational age) 
in pregnancy, we identified two additional taxa that were signifi-
cantly increased in PTB samples: Megasphaera type 1 and TM7-H1 
(that is, BVAB-TM7) (see Extended Data Fig. 3). Both of these taxa 
have been previously associated with adverse conditions of vaginal 
health12. These findings extend those of a previous study that found 
carriage of BVAB1 and Sneathia species in early and mid-pregnancy 
to be associated with spontaneous PTB26. To our knowledge, this is 
the first report of an association of TM7-H1 with PTB.

Early prediction of risk for PTB is critical for the development of 
new strategies for prevention and intervention. As a proof of concept, 
we developed a model for identifying the most discriminative taxa 
for PTB using 16S rRNA data from samples collected at 24 weeks of 
gestation or earlier. Model construction involved selecting taxa that 
are differentially represented in the cohorts as assessed using the 
Mann–Whitney U-test (Fig. 2d, and see Extended Data Fig. 3a and 
Supplementary Table 5), and assigning weights to these taxa using 
L1-regularized logistic regression. The resulting model incorporates 
four taxa: S. amnii, BVAB1, Prevotella cluster 2 and TM7-H1, which 
are all positively correlated with PTB (Fig. 2d, and see Extended 
Data Fig. 3b,c). The discriminative model is significant (P = 0.0024) 
and has an expected sensitivity of 77.4%, specificity of 76.3%, and 
an area under the receiver operating characteristics (AUROC) curve 

NATURE MEDICINE | VOL 25 | JUNE 2019 | 1012–1021 | www.nature.com/naturemedicine 1013

http://www.nature.com/naturemedicine


Articles NATURE MEDIcINE

of 0.723 for samples not used during training. This model, based 
on microbiome composition data, had 5–7% greater sensitivity and 
specificity than a model constructed using only clinical variables 

with a slight reduction in the AUROC curve (that is, 0.723 versus 
0.764). A network analysis of these four taxa (Fig. 2c) shows them to 
be positively correlated with taxa associated with vaginal dysbiosis.
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Fig. 1 | MOMS-PI resources. a, An overview of the study designs for the MOMS-PI PTB study (45 spontaneous preterm (sPTB) cases and 90 term 
controls) and the MOMS-PI TB study (90 women who delivered at term or early term and their neonates). Both cohorts were selected from the phase 
1 RAMS Registry cohort (n = 627). b, Omics data were generated from samples from the MOMS-PI PTB and MOMS-PI TB studies and 384 additional 
pregnancies from the overall MOMS-PI cohort. Samples from the 12 women who were selected for both the MOMS-PI PTB study and the MOMS-PI TB 
study are depicted under both studies. Omics data types include 16S rRNA amplicon sequencing, metagenomic sequencing (MGS), metatranscriptomic 
sequencing (MTS), host cytokine assays and lipidomics. c, A total of 206,437 samples were collected at more than 7,000 visits from 1,572 pregnancies in 
the MOMS-PI study, and are archived in the RAMS Registry.
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We further examined longitudinal trends of key taxa using a 
generalized additive mixed effect model (GAMM) incorporating 
body mass index (BMI), vaginal pH, ethnicity and preterm sta-
tus (Fig. 3a, and see Supplementary Fig. 1a). Many taxa identified 
as associated with PTB in the 16S rRNA cross-sectional analyses, 
including S. amnii (P = 0.0015), Prevotella cluster 2 (P = 0.0031), 
BVAB1 (P = 0.0037) and P. amnii (P = 0.0031), were also associ-
ated with PTB in this longitudinal analysis. Women who delivered 
preterm experienced large decreases during pregnancy in S. amnii 
(P = 0.0163), BVAB1 (P= 0.0002), P. amnii (P = 0.0004), Gardnerella 
vaginalis (P = 0.0074), TM7-H1 (P = 0.0005) and Atopobium vaginae 
(P = 0.0090). Prevotella cluster 2 also showed a decreased prevalence 
later in pregnancy, but the decrease was not statistically significant. 
In contrast, L. crispatus increased in prevalence (P = 0.0320) over 
the course of the pregnancy in women who delivered preterm. 
Women who delivered at term exhibited significant decreases in 
prevalence of A. vaginae (P < 0.0001) and G. vaginalis (P = 0.0012), 
and an increase in L. iners (P = 0.0273).

A stratification of the longitudinal GAMM analysis by ances-
try (Fig. 3b, and see Supplementary Fig. 1b) showed that, over 
the duration of pregnancy, women of African ancestry who deliv-
ered preterm experienced significant decreases in the prevalence 
of A. vaginae (P = 0.0011), BVAB1 (P = 0.0003), G. vaginalis 
(P = 0.0002), P. amnii (P= 0.0013), S. amnii (P = 0.0219) and TM7-
H1 (P = 0.0014). Women of African ancestry (AA) who delivered 
at term exhibited fewer changes in the modeled taxa throughout 
pregnancy, although decreases in A. vaginae (P = 0.0001) and G. 
vaginalis (P = 0.0003) and an increase in L. iners (P = 0.0404) were 
observed. Women of European ancestry (EA) generally exhib-
ited stable microbiome profiles during pregnancy, although an 
increase in prevalence of G. vaginalis (P = 0.0401) was noted for 
women who delivered preterm. G. vaginalis has been previously 
reported as a microbial signature for PTB in cohorts of women of 
predominantly European ancestry25. Overall, our observations are 
consistent with previous reports of dynamic changes in the vaginal 
microbiome in pregnancy18,48,49 and results from the MOMS-PI TB 
study, which show that the dynamics of vaginal microbiome dif-
fer by ancestry, with women of African ancestry exhibiting a more 
pronounced decrease in microbial diversity throughout the course 
of a term pregnancy42.

A total of 496 longitudinal vaginal samples from participants in the 
MOMS-PI PTB study (see Fig. 1b) were subjected to metagenomic 
sequencing (MGS) and a subset of 243 samples was subjected to 
metatranscriptomic sequencing (MTS) (see Extended Data Fig. 4).  
At the pathway level, the functional and metabolic potentials of the 
microbial communities were largely conserved, with the exception 
of L. crispatus-dominated samples, which exhibited a much higher 
proportional metabolic potential and transcriptional activity of 
the UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) biosynthesis 
pathway (see Extended Data Fig. 5). UDP-GlcNAc is a precursor 
for peptidoglycan, one of the best-described, microbe-associated 
molecular patterns involved in the modulation of host cytokine 
production via toll-like receptor signaling50. Additional stud-
ies are required to determine whether combinations of microbe-
associated molecular patterns produced by the vaginal microbiota 
modulate host cytokine levels and impact urogenital health. In 
contrast, the proportional transcriptional activities of genes classi-
fied to the pathway of pyruvate fermentation to acetate and lactate 
II, and the non-oxidative branch of the pentose phosphate path-
way, were lower in L. crispatus-dominated samples (see Extended 
Data Fig. 5). This finding is consistent with reports of reduced 
levels of lactic acid and increased concentrations of short-chain 
fatty acids in vaginal samples of women with bacterial vaginosis51. 
Short-chain fatty acids have been suggested to reduce antimicro-
bial activity and promote proinflammatory cytokines in the vagi-
nal environment.

Metagenomic assembly of reference genomes of bacterial 
taxa associated with PTB. MGS data generated with Pacific 
BioSciences and Illumina sequencing technologies were used 
to generate the first genomes of TM7-H1 (CP026537) and 
BVAB1 (PQVO000000), respectively. BVAB1, with a genome of 
~1.45 megabases (Mb), is classified to the Family Lachnospiraceae 
of the Order Clostridiales, and is not closely related to any 
other known bacterium (see Supplementary Table 6). TM7-H1, 
with a genome of ~0.72 Mb, falls into the Phylum Candidatus 
Saccharibacteria and exhibits only ~66% nucleotide identity with 
the recently described oral TM7x isolate (NZ_CP007496)52. TM7-
H1 encodes a putative α-amylase and is predicted to be able to 
utilize glycogen as a carbon source (see Supplementary Data 1). 
Similar to TM7x52, TM7-H1 lacks de novo biosynthetic capabilities 
for essential amino acids (see Supplementary Table 7), and likely 
depends on other organisms in the vaginal environment for sur-
vival. However, although TM7x is an obligate parasitic epibiont, it 
remains unknown whether TM7-H1 similarly lives on the surface 
of another bacterial species in the vaginal environment. We identi-
fied 243 and 421 metabolic reactions, respectively, in TM7-H1 and 
BVAB1 (see Supplementary Tables 7 and 8, and Supplementary 
Data 2). Both organisms are predicted to have the ability to pro-
duce pyruvate, acetate, l-lactate and propionate. BVAB1 encodes 
additional pathways for production of acetaldehyde, d-lactate, 
formate and acetyl-CoA. Neither is predicted to have a functional 
tricarboxylate cycle, and TM7-H1 completely lacks genes related 
to butyrate metabolism. As described above, production of short-
chain fatty acids has been linked to a proinflammatory state51, with 
possible implications for disease.

Bacterial taxa associated with PTB in metagenomic and  
metatranscriptomic data. On average, approximately 95% of 
MGS reads and 30% of MTS reads were identified as human (see 
Extended Data Fig. 4). Most non-human MGS and MTS reads 
mapped to our customized vaginal bacterial database, with only a 
small fraction remaining unmapped (that is, average of 0.45% full-
term metagenomics, 0.41% preterm metagenomics, 1.67% full-term 
metatranscriptomics and 2.46% preterm metatranscriptomics) (see 
Supplementary Data 3). We compared the relative proportional 

Table 1 | Description of cohort studied in this project

Preterm delivery 
<37 weeks  
(n = 45)

Term delivery 
≥39 weeks 
(n = 90)

Mean age (years)a 26 (5.68) 25.9 (5.43)

Ancestry/ethnicity (no. (%))

 African 35 (77.8) 71 (78.9)

 European 6 (13.3) 13 (14.4)

 Hispanic 3 (6.7) 5 (5.6)

 Native American 1 (2.2) 1 (1.1)

Household income (no. (%))b

 <US$20,000 29 (72.5) 66 (77.7)

 US$20,000–59,999 9 (22.5) 15 (17.6)

 US$60,000+ 2 (5.0) 4 (4.7)

Vaginal delivery (no. (%)) 38 (84.4) 74 (82.2)

Previous preterm (no. (%)) 14 (31.1) 9 (10.0)

Preterm premature rupture of the 
membranes (no. (%))

26 (57.8) 0 (0)

aStandard deviation listed in parentheses. bMissing values n = 5 (PTB), n = 5 (TB).
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abundance of taxa from the 16S rRNA assay with the relative pro-
portional abundance of metagenomic and metatranscriptomic 
data that mapped to non-ribosomal genes across the 56 taxa in our 
database. Although proportional differences were observed across 
detection methods, there was concordance in detection of taxa 
using 16S rRNA profiles, MGS and MTS (see Extended Data Fig. 6).

Paired MGS and MTS data were available for 41 women who 
delivered preterm and for 81 term controls. Thus, we analyzed a 
single time point per participant, with a mean gestational age of 
sampling at 25 weeks for the preterm cohort and 26 weeks for the 
full-term cohort; we also used a global scaling approach to normal-
ize to all genes in the 56 taxa in our database. In the preterm sam-
ples, we observed higher transcript levels of genes from all of the 
taxa identified as candidate markers of PTB that were analyzed, with 
inclusion of samples collected even later in pregnancy than those 
used for 16S rRNA analyses (Fig. 4). Conversely, we observed higher 

transcript levels of L. crispatus in the term samples. L. jensenii,  
L. gasseri, L. iners and G. vaginalis had relatively few genes that 
showed very different transcript levels between the term and pre-
term cohorts (Fig. 4).

Using the same approach with MGS data, we observed similar 
trends, but fewer genes were identified as statistically significant 
(Padj < 0.05) overall (see Extended Data Fig. 7a and Supplementary 
Tables 9 and 10). Interestingly, 12.55% of the G. vaginalis genes 
analyzed using MGS data were significantly higher in the term 
cohort, whereas only one gene (that is, 0.02% of genes analyzed) 
that was identified as a hypothetical protein was higher (Padj < 0.05) 
in the preterm cohort. We found the overall relative transcriptional 
rate of G. vaginalis was higher in preterm samples compared with 
term samples, using a calculated ratio of the proportion of reads 
mapped to genes in G. vaginalis reference genomes by MTS to 
reads mapped by MGS (Wilcoxon’s, P < 0.05; see Extended Data 
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Fig. 2 | Bacterial taxa associated with spontaneous PTB. a, Vagitypes of 90 women who delivered at term (≥39 weeks of gestation), and 45 women 
who delivered prematurely (<37 weeks of gestation) showing 13 community states, or vagitypes. b, Abundance of taxa significantly different in PTB 
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the cohorts, corrected using the Benjamini–Hochberg procedure with an FDR of 5%. TB is indicated in blue as (–) and PTB in red as (+). Boxes show the 
median and interquartile range; whiskers extend from minimum to maximum values within each cohort. c, Network analysis of four taxa highly associated 
with PTBs. Negative correlations are shown in green, positive correlations in blue and predictive taxa in gray. Edge weights represent the strength of 
correlation. See Supplementary Table 3 for abbreviations. d, Predictive linear model for PTBs that produces a score based on weighted log(abundances) 
of four taxa in vaginal 16S rRNA profiles in the 6- to 24-week gestational age range. Taxa abbreviations: Lcricl, L. crispatus cluster; BVAB1, Lachnospiraceae 
BVAB1; Pcl2, Prevotella cluster 2; Samn, S. amnii; Dcl51, Dialister cluster 51; Pamn, P. amnii; BVAB2, Clostridiales BVAB2; CO27, Coriobacteriaceae OTU27; 
Dmic, Dialister micraerophilus; P142, Parvimonas OTU142.
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Fig. 7b,c). Previous studies have suggested that PTB risk differs 
with carriage of different G. vaginalis clades25. We extend this find-
ing by showing data suggesting that PTB risk also differs with the 
transcriptional activity of G. vaginalis. Further investigations will 
be required to determine the underlying mechanisms that impact 
replication and transcription of different strains of G. vaginalis  
during pregnancy, and how these mechanisms affect women’s 
reproductive health and pregnancy.

Genes encoding proteins involved in bacterial secretion systems 
play an important role in pathogenicity53. Thus, we examined all 
genes predicted to encode proteins involved in bacterial secretion 
in the database. We observed that 81% (71/91) of the predicted 
genes encoding secreted proteins that were far more transcription-
ally abundant in the preterm cohort were from taxa identified as 
associated with PTB in our 16S rRNA analyses (see Extended Data  
Fig. 8a, Supplementary Tables 11 and 12, and Supplementary Data 4).  
The detected differences between the PTB and TB samples likely 
reflect the elevated proportional abundance of these taxa in PTB 
samples. Further studies are needed to determine whether these 
genes may contribute to mechanisms by which components of the 
vaginal microbiome may mediate or cause pathology or PTBs.

Host cytokine expression in PTB. Of the nine cytokine levels 
examined in the present study (interleukin (IL)-1β, IL-6, IL-8, 
eotaxin, tumor necrosis factor (TNF)-α, IL-17A, macrophage 
inflammatory protein (MIP)-1β, interferon-γ-induced protein (IP)-
10/chemokine ligand (CXCL)10, RANTES (regulated on activation, 
normal T cell expressed and secreted)), four (eotaxin, IL-1β, IL-6 
and MIP-1β) were greatly increased in PTB relative to TB samples 
(false discovery rate (FDR)-adjusted P < 0.05 for each), consistent 
with previous reports of elevated IL-1, IL-6, MIP-1, IP10/CXCL10 
and other proinflammatory cytokines associated with PTB in blood, 
amniotic fluid or cervical–vaginal lavage samples54. For further 
examination of the role of cytokines in the progression of pregnancy 
to PTB, we performed an integrative sparse canonical correlation 
analysis (sCCA) to assess the association of specific bacterial taxa 
with the abundance levels of nine key cytokines. For each partici-
pant, the sample corresponding to the earliest gestational age per 
trimester was characterized. In women who delivered at term (Fig. 
5a), we observed a strong negative correlation between L. crispatus 
and several taxa associated with dysbiosis and PTB (for example, G. 
vaginalis, Prevotella cluster 2, S. amnii and, to a lesser extent, TM7-
H1), as well as with the analyzed cytokines. The analyzed cytokines, 
which are largely proinflammatory, were loosely correlated both 
with each other and with taxa associated with dysbiosis and PTB. 
Notably, IP-10/CXCL10, which functions to induce chemotaxis of 
immune cells and promotes apoptosis, cell growth and angiostasis, 
and is generally considered to be proinflammatory55, was positively 
correlated with L. iners. This association was previously reported 
in the reproductive tracts of non-pregnant women from Kenya56. 
In contrast, in women who went on to experience PTB (Fig. 5b), 
the proinflammatory cytokines and dysbiotic taxa (for example,  
A. vaginae, G. vaginalis and Megasphaera type 1) formed a tighter 
cluster, indicating a stronger positive correlation, but IP-10/CXCL10 
did not correlate with L. iners. Furthermore, BVAB1 was negatively 
correlated with IP-10/CXCL10 in these samples.

Cross-study comparisons of the vaginal microbiome and pre-
term birth. Several recent studies25,27,28,30 generally reported limited 
correlation between the composition of the vaginal microbiome and 
PTB in cohorts of African descent. We compared the distributions 
of distinct candidate taxa for PTB risk across four studies25,27,30 of 
the vaginal microbiome in cohorts of pregnant women with pre-
dominantly African ancestry, including the MOMS-PI PTB study, 
with a harmonized reanalysis of the raw 16S rRNA sequencing reads 
(see Supplementary Tables 13 and 14, and Extended Data Figs. 9 

and 10). There were non-trivial differences in every technical aspect 
of study design including sample collection, DNA extraction, PCR 
primers and conditions, sequencing platform, data quality and 
deposit which precluded an integrated analysis of these datasets (see 
Supplementary Table 13). Moreover, each of these studies varied 
markedly in cohort demographics, inclusion and exclusion criteria, 
and even the definition of PTB. PTB is understood to be a syndrome 
with many underlying causes9. Ascending infection of microbes 
from the vagina likely plays a causative role in some subtypes of 
PTB, but likely does not play a contributing role in all PTB. Thus, 
there were considerable differences (see Extended Supplementary 
Table 14) in the PTB case cohorts, as originally published in terms 
of the distribution of gestational age at delivery (see Extended Data 
Fig. 9), the percentage of women who had a non-medically indicated 
spontaneous PTB (37.5–100%), preterm premature rupture of the 
membranes (12.5–57.8%), treatment with progesterone (0–100%) 
or a history of PTB (29.1–100%). Our attempts to aggregate data 
from different studies highlight the opportunities for harmoniza-
tion to obtain comparable data across studies.

We examined only the spontaneous preterm cases and we 
rematched controls 1:2 using the same approach from the present 
study to harmonize study designs across studies as far as possible 
for reanalysis. Sample sizes were small, in the range 5–18 spontane-
ous PTB cases, with controls matched 1:2. Although not statistically 
significant, likely due to sample size, cohort characteristics, and 
differences in experimental design and details as outlined above, 
we found partial support for candidate taxa identified in the pres-
ent study (see Extended Data Fig. 10a–d). For example, the pres-
ent study confirms an association between Sneathia sanguinegens  
and PTB, which was reported as significant (P < 0.05) before 
adjustment for multiple testing by Romero et al.30. Although there 
were only five spontaneous PTB cases reanalyzed in the Stout et al. 
cohort27, and only ten in the reanalyzed Callahan et  al.25 cohort, 
we observed high concordance in the directionality of differences 
in abundance levels of preterm and term groups between these 
cohorts and the present study. We were also able to confirm that 
BVAB1, Megasphaera phylotype 1 and Sneathia species were ele-
vated in a preterm cohort, which Nelson et al.26 previously reported 
as related to an increased risk for PTBs among women reporting 
a prior preterm delivery. The Nelson et al.26 study used quantita-
tive PCR rather than 16S rRNA profiling, and the study was thus 
not included in the harmonized reanalysis. We also confirmed that  
L. iners and G. vaginalis, which were identified as vaginal microbial 
signatures associated with PTB in low-risk cohorts25, did not gen-
eralize to cohorts of African ancestry.

Discussion
From a subset of 597 of the 1,572 pregnancies longitudinally sampled 
for the MOMS-PI study, we have generated omics data from more 
than 12,000 samples in one of the largest and most comprehensive 
multi-omic studies published to date. In addition, our analyses of 
longitudinal omics data from vaginal samples from 45 women who 
delivered preterm and 90 controls showed a signature of PTB in a 
cohort of women of predominantly African ancestry, including sev-
eral taxa that have previously been implicated in adverse outcomes 
of pregnancy, including premature delivery22,26,57–59, in addition to 
taxa that have not been previously linked to adverse pregnancy out-
comes. Women of African ancestry have a greatly increased risk of 
PTB compared with women of European ancestry60. Previous stud-
ies16,21 have shown that carriage of L. crispatus, which is negatively 
associated with PTB (see Fig. 2 and refs. 22–25), is more prevalent in 
women of European ancestry, and BVAB1, which is positively asso-
ciated with PTBs, is more common in women of African ancestry. 
Thus, our findings are consistent with a proposed framework in 
which there is a spectrum of vaginal microbiome states linked to 
risk for PTB, and that these states vary across populations.
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Our longitudinal modeling showed taxa associated with PTB 
tended to decrease in abundance in the vaginal environment 
throughout pregnancy, particularly in women of African ancestry. 
This finding is consistent with previous observations that preg-
nancy is associated with reduced carriage of bacterial vaginosis-
associated organisms21,27,57. Considering that an adverse pregnancy 
outcome may be caused by ascension of pathogenic microbes, this 
trend suggests that the microbiome composition early in pregnancy 
may be most useful in the prediction of adverse outcomes. In a 
complementary analysis of an ethnically diverse cohort of women 
who delivered at term or early term in the MOMS-PI TB study, we 
show differences in the longitudinal dynamics of the microbiome 
in women of African ancestry compared with women of European 
ancestry42. In the present study, we developed a proof-of-concept 
model that suggests the presence of BVAB1, Prevotella cluster 2, 
S. amnii and TM7-H1 early in pregnancy may be useful for pre-
diction of risk for PTB, particularly in high-risk populations. It is 
possible that BVAB1, Prevotella cluster 2, S. amnii and TM7-H1, 
and other taxa may have roles in the causation of PTB. As BVAB1 
and TM7-H1 had not been cultivated or genetically characterized, 
we assembled their genomes from MGS data to search for clues to 
their pathogenic potential. We previously characterized the genome 
of S. amnii, identified potential cytotoxin genes and showed that 
cultured bacteria kill eukaryotic cells in  vitro61. Although culture 
is not available for BVAB1 or TM7-H1, genomic factors identified 
in their genomes can now be genetically amplified and recombined 
into heterologous reporter systems and tested for pathogenic activ-
ity. Our MTS and MGS analyses supported the microbial signatures 
identified using 16S rRNA profiles.

Analysis of vaginal cytokine data from the MOMS-PI PTB study 
is consistent with previous findings showing that bacterial taxa gen-
erally associated with dysbiosis are highly correlated with expression 
of proinflammatory cytokines, which may play a role in the induc-
tion of labor. Labor is associated with proinflammatory cytokine 
expression, and premature labor can be induced by host inflamma-
tory responses. We observed that vaginal IP-10/CXCL10 levels were 

inversely correlated with BVAB1 in PTB, inversely correlated with  
L. crispatus in TB and positively correlated with L. iners in TB, sug-
gesting complex host–microbiome interactions in pregnancy.

Our findings contribute to an understanding of how microbial 
markers for PTB vary across populations. Vaginal microbiome 
composition as a whole and carriage rates of specific microbial taxa 
vary dramatically across populations, and thus it is not unexpected 
that the importance of relevant markers differs accordingly. Further 
studies are needed to determine whether the signatures of PTB 
reported in the present study replicate in other cohorts of women 
of African ancestry, to examine whether the observed differences 
in vaginal microbiome composition between women of different 
ancestries has a direct causal link to the ethnic and racial disparities 
in PTB rates, and to establish whether population-specific micro-
bial markers can be ultimately integrated into a generalizable spec-
trum of vaginal microbiome states linked to the risk for PTB. Taken 
together, our data suggest that, coupled with other clinical and pos-
sibly genetic factors, microbiome-associated taxonomic, metabolic 
and immunologic biomarkers may be useful in defining the risk of 
PTB, and that this risk might be assessed early in pregnancy.
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Methods
Participant enrollment, informed consent and health history collection. 
Participants for this study were enrolled from women visiting maternity clinics 
in Virginia and Washington State. All study procedures involving human subjects 
were reviewed and approved by the institutional review board at VCU (IRB no. 
HM15527). Participants were enrolled at multiple sites in Washington State by 
our partner registry, the GAPPS (see www.gapps.org) which was at the time 
under the umbrella of Seattle Children’s IRB (FWA00002443), IRB Application 
number 12879. Study protocols were harmonized across sites, and data and 
samples from participants enrolled in Washington State were distributed to the 
VCU site. Samples were collected from ten maternal body sites (that is, vaginal, 
cervical, buccal and rectal mucosa, blood, urine, chest, dominant palm, antecubital 
fossa and nares), five types of birth products (that is cord blood, amniotic fluid, 
placental membranes, placental tissue and umbilical cord) and seven infant body 
sites (that is, buccal and rectal mucosa, meconium/stool, chest, right palm, nares 
and respiratory secretions if intubated). All study participants enrolled in Virginia 
and most participants enrolled at Washington State sites were also enrolled in the 
RAMS Registry at VCU. RAMS Registry protocols were approved at VCU (IRB no. 
HM15528); GAPPS-associated sites ceded review to the VCU IRB through reliance 
agreements. Additional samples were collected from the participants enrolled 
in Washington State, which are archived at the GAPPS. The present study was 
performed with compliance with all relevant ethical regulations. Written informed 
consent was obtained from all participants and parental permission and assent 
were obtained for participating minors aged at least 15 years.

Pregnant women were provided literature on the project and invited to 
participate in the study. Women who (1) were incapable of understanding the 
informed consent or assent forms or (2) were incarcerated were excluded from the 
study. Comprehensive demographic, health history and dietary assessment surveys 
were administered, and relevant clinical data (for example, gestational age, height, 
weight, blood pressure, vaginal pH, diagnosis) were recorded. Relevant clinical 
information was also obtained from neonates at birth and discharge.

At subsequent prenatal visits, triage, in labor and delivery, and at discharge, 
additional surveys were administered, relevant clinical data were recorded and 
samples were collected. Vaginal and rectal samples were not collected at labor 
and delivery or at discharge. Women with any of the following conditions were 
excluded from sampling at a given visit:

 (1) Incapable of self-sampling due to mental, emotional or physical limitations
 (2) More than minimal vaginal bleeding as judged by the clinician
 (3) Ruptured membranes before 37 weeks
 (4) Active herpes lesions in the vulvovaginal region

MOMS-PI PTB study case–control design. We initially selected 47 preterm cases 
of singleton, non-medically indicated PTBs from women who delivered between 23 
weeks of gestation and 36 weeks and 6 days of gestation, and were selected from the 
627 pregnancies in the Virginia arm of the study for whom gestational age at delivery 
was available at the time of the study design (phase 1 RAMS Registry cohort). From 
the phase 1 RAMS Registry cohort, 82 delivered before 37 weeks of gestation. Twelve 
of the participants who delivered preterm had multiple gestation pregnancies, 
twenty-one experienced medically indicated delivery, one delivered after fetal 
demise and one delivered a fetus at a non-viable gestational age. The participants 
had completed the study through delivery, and their gestational age information had 
been recorded in the study operational database at the time of the study design. We 
case matched the preterm participants 2:1 with participants who completed the study 
with singleton term deliveries ≥39 weeks, to avoid complications associated with 
early term birth43–45, with matching based on ethnicity, age and annual household 
income. With these criteria, we matched controls to cases as closely as possible, 
loosening criteria at each pass using an in-house script; a few difficult-to-match cases 
were matched by hand. Case matching was performed blinded to all other study data. 
Two of the 47 PTBs did not have 16S rRNA that passed quality control, so these PTB 
samples and their controls were excluded from the MOMS-PI PTB study.

MOMS-PI TB study design. From an early subset of women who delivered in the 
MOMS-PI, we selected 90 pregnancies, including 41 women of European descent 
and 49 of African descent, who experienced term (≥39 weeks of gestation) or early 
term birth (between 37 weeks of gestation and 38 weeks and 6 days of gestation).

Early pregnancy study design. An early pilot study was selected from a subset of 
69 women in the MOMS-PI cohort from whom vaginal samples had been collected 
before 14 weeks of gestation. Targeted vaginal lipidomic profiles, vaginal cytokine 
profiles and vaginal 16S rRNA taxonomic profiles were generated.

Maternal sampling schedule. Samples were collected from appropriately 
consented women at the enrollment visit, longitudinally at each prenatal visit, at 
triage, at labor and delivery, at discharge (~24–48 h after birth) and at postpartum 
follow-up visits. All swab samples were collected with BD BBL CultureSwab EZ 
swabs. Self-sampling has been shown to provide samples equivalent to those 
collected by a trained clinician. Vaginal and rectal samples were collected either 
by healthcare providers during a pelvic exam (no speculum) or by self-sampling 

longitudinally throughout pregnancy and at postpartum follow-up visits. Vaginal 
and rectal samples were not collected at the discharge visit. Research coordinators 
instructed the participants on self-sampling procedures, provided a self-sampling 
instructional brochure and provided the participant a room for self-sampling. 
Maternal buccal samples were collected by a research coordinator during a study 
visit or by self-sampling at all visit types. Blood samples were collected at select 
visits by phlebotomists. Urine samples were longitudinally collected using a clean-
catch protocol for a subset of participants. Cervical samples were collected by a 
clinician during a pelvic exam using a speculum at select visits. Samples from the 
antecubital fossa and nares were collected by research coordinators longitudinally 
throughout pregnancy, at discharge visits and at postpartum follow-up visits, 
but not at triage visits. At discharge visits, dominant palm and chest (skin) 
samples were also collected by a research coordinator. For samples collected at 
RAMS Registry sites, the following birth products were also collected: placental 
membranes, placental tissue, umbilical cord, cord blood and amniotic fluid 
(cesarean section only). Birth products, urine and additional blood samples for the 
participants enrolled through GAPPS sites are archived at the GAPPS Repository.

Infant sampling schedule. Samples from neonates (for example, buccal, rectal, 
meconium/stool, right palm, chest and nares) were collected at birth (~1 h after 
birth) and at discharge (~24–48 h after birth). For infants admitted to the neonatal 
intensive care unit (NICU), additional samples were collected at days 3 and 7 of life 
and weekly until discharge from the NICU, or until the infant’s first birthday. In the 
NICU, respiratory secretions were also collected from infants who were intubated. 
Buccal, rectal, right palm, chest and nares swabs were collected by healthcare 
providers. Meconium/stool samples were collected by research coordinators from 
diapers using sterile CultureSwab EZ swabs.

Swab sample preprocessing. Swab samples were collected as follows: (1) maternal 
mid-vaginal wall: a double-tipped CultureSwab EZ swab was inserted ~5 cm into 
the vagina, pressed against the vaginal sidewall, rotated for 5 s and removed; (2) 
maternal cervical: during a speculum exam, a single-tipped CultureSwab EZ swab 
was inserted into the endocervix to the depth of the entire tip of the swab, rotated 
360°, held for 10 s and removed, being careful not to contact the vaginal walls; (3) 
maternal and infant buccal: a double-tipped CultureSwab EZ was placed firmly 
in the mid-portion of the cheek, rotated for 5 s and removed; (4) maternal rectal: 
a double-tipped CultureSwab EZ swab was inserted to a depth of ~2.5 cm into the 
rectum, rotated for 5 s and removed; (5) infant rectal: a single-tipped CultureSwab 
EZ swab was inserted to a depth of up to ~0.64 cm into the rectum, rotated for 5 s 
and removed; maternal and infant nares samples were collected using single-tip 
CultureSwab EZ swab dipped in sterile saline and inserted ~1.27 cm for maternal 
samples (up to ~0.64 cm for infant) in the left nostril, rotated for 5 s and removed; (6) 
maternal and infant chest samples were collected using a double-tipped CultureSwab 
EZ swab dipped in sterile saline, pressed against the chest and rotated for 5 s; 
maternal dominant palm and infant right palm samples were collected; (7) maternal 
dominant palm and infant right palm samples were collected using a double-tipped 
CultureSwab EZ swab dipped in sterile saline, pressed against the palm and rotated 
for 5 s; (8) vaginal pH was collected using commercial applicators with pH paper. 
Briefly, the applicators were inserted ~3.8–5 cm into the vagina, applied gently to the 
vaginal wall and withdrawn. The research coordinator compared the color of the pH 
indicator with a color chart and recorded the vaginal pH.

Swabs were preprocessed and stored at −80 °C within an hour of collection. 
Material from swabs was transferred to the solutions compatible with downstream 
omics assays by vigorous spinning of swabs against the side walls of tubes for 15 s. 
Maternal vaginal, maternal and infant buccal, maternal and infant rectal, maternal 
cervical, maternal and infant chest, maternal dominant palm, infant right palm 
and maternal antecubital fossa swabs for DNA isolation were immersed in 750 μl 
MoBio PowerSoil DNA Isolation buffer; maternal vaginal, maternal and infant 
buccal, maternal and infant rectal, maternal cervical, maternal and infant chest, 
maternal dominant palm, infant right palm and maternal antecubital fossa swabs 
collected to be preserved for cultivation studies were immersed in 1 ml of culture 
medium (brain heart infusion supplemented with 1% yeast extract, 2% gelatin, 0.1% 
starch, 1% glucose and 20% glycerol); maternal vaginal swabs for RNA purification 
were immersed in RNAlater (Qiagen); maternal vaginal and maternal and infant 
buccal swabs for cytokine profiling were immersed in 500 μl of 10 mM Tris, pH 
7.0, 1 mM ethylenediaminetetraacetic acid; maternal vaginal and maternal and 
infant buccal swabs were also immersed in 250 μl of 10 mM Tris, pH 7.0, 1 mM 
ethylenediaminetetraacetic acid; and maternal vaginal swabs were immersed in 500 μl 
of 0.01% butylhydroxytoluene phosphate-buffered saline solution for lipid analyses.

Sample processing. DNA purification was performed using the MoBio PowerSoil 
Kit, as described by the manufacturer. RNA purification was performed using the 
MoBio PowerMicrobiome RNA Isolation Kit as described by the manufacturer. 
Total RNA was depleted of human and microbial rRNA using the Epicentre/
Illumina Ribo-Zero Magnetic Epidemiology Kit, as described by the manufacturer. 
DNA and RNA samples were stored at −80 °C.

16S rRNA taxonomic surveys of the vaginal microbiome. DNA in each sample 
was amplified with barcoded primers targeting the V1–V3 region of the 16S rRNA 
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and validated for vaginal taxa as previously reported47. Primer sequences are listed 
in Supplementary Table 8. The samples were randomized at the PCR stage and 
again at the sequencing stage. Samples were multiplexed (384 samples per run) 
and sequenced on our Illumina MiSeq sequencer using 600 cycles creating 2 × 
300 bp paired-end reads to generate a depth of coverage of at least 50,000 reads 
per sample. The raw sequence data were demultiplexed into sample paired-end 
fastq files based on unique barcode sequences using a customized Python script. 
The preprocessing of sequences was performed using the MeFiT62 pipeline, with 
amplicons (on average ~540 base-pairs (bp) long) generated by merging the 
overlapping tails of paired-end sequences, followed by quality filtering using a 
MEEP (maximum expected error rate) cutoff of 1.0. Data were processed using 
harmonized bioinformatics pipelines with the other iHMP projects for upload to 
the Human Microbiome Project Data Coordination Center (HMP DACC). Non-
overlapping, high-quality reads were assigned to operational taxonomic units 
(OTUs), using the reference-based clustering method implemented by the pick_
closed_reference_otus.py script in the QIIME package. For data uploaded to the 
HMP DACC, the reference database used is the subset of Greengenes 16S rRNA 
sequence database clustered at 97% identity.

For each sample, the raw paired-end reads were uploaded to the HMP DACC 
and NIH Sequence Read Archive (SRA) as FASTQ files (16SRawSeqSet node), 
the quality-filtered reads as FASTQ files (16STrimmedSeqSet node) and the qiime 
output OTU tables in the biom format (16s_community).

For analysis of vaginal samples in the MOMS-PI PTB cohort, an alternate 
bioinformatics method was used. Non-overlapping, high-quality reads were 
screened for chimeric sequences with UCHIME63 against our custom database of 
vaginally relevant taxa. Each processed 16S rRNA gene sequence was taxonomically 
classified to the species level using STIRRUPS47, which aligns against a custom 
reference database using USEARCH. Reference sequences for Prevotella cluster 2 
include P. buccalis, P. timonensis, Prevotella OTU46 and Prevotella OTU47. Only 
samples with at least 1,000 reads that met filtering criteria were analyzed. For 
vaginal samples, the STIRRUPS output tables were also uploaded to the HMP 
DACC (16s_community).

Whole shotgun metagenomic/metatranscriptomic sequencing. DNA libraries 
were prepared using KAPA Biosystems HyperPlus Library Kit and sequenced 
on our Illumina HiSeq 4000 (2 × 150 b PE). We sequenced all available vaginal 
samples for the PTB and TB cohorts, multiplexed 24 samples per lane and 
obtained ~1–2 × 107 150-nucleotide reads per sample. For MGS, we subjected 555 
vaginal samples to sequencing and 542/555 (97.7%) had a minimum of 100,000 
post-quality control (QC)-filtered read pairs. For MTS, we selected samples in 
the second trimester and the last collected sample for sequencing. If samples 
were not available in the second trimester, samples before and after the targeted 
second trimester window were selected. RNA was extracted from a total of 337 
samples, of which 243 (72.10%) had at least 10 ng μl–1 of RNA and were submitted 
for sequencing. Of these 242/243 (99.6%) met our minimum of 100,000 post-
QC-filtered read pairs. The rRNA-depleted messenger RNA was prepared for 
sequencing by constructing complementary DNA libraries using the KAPA 
Biosystems KAPA RNA HyperPrep Kit. Indexed complementary DNA libraries 
were pooled in equimolar amounts and sequenced on the Illumina HiSeq 4000 
instrument, running four multiplexed samples per lane, with an average yield of 
~100 Gb per lane, sufficient to provide >100× coverage of the expression profiles of 
the most abundant 15–20 taxa in a sample.

Whole shotgun metagenomic/metatranscriptomic data pre-processing. Raw 
sequence data were demultiplexed into sample-specific fastq files using bcl2fastq 
conversion software from Illumina. Adapter residues were trimmed from both 
the 5′- and the 3′-end of the reads using Adapter Removal tool v.2.1.3. The 
sequences were trimmed for quality using MEEPTOOLS64, retaining reads with 
a minimum read length of 70 b and MEEP quality score <1. Human reads were 
identified and removed from each sample by aligning the reads to the hg19 build 
of the human genome, using the BWA aligner. Taxonomic classification and 
relative abundance of bacteria in the metagenomes and metatranscriptomes, 
using harmonized bioinformatics pipelines with the other iHMP projects for 
upload to the HMP DACC, were obtained using Metaphlan2 (ref. 65), with default 
parameters. The human-filtered MGS and MTS nodes were created at HMP 
DACC, WGSRawSeqSet and MicrobTranscriptomicsRawSeqSet, respectively, which 
link to the controlled-access data at the database of Genotypes and Phenotypes 
(study no. 20280). Metaphlan2 output community profiles of metagenomes and 
metatranscriptomes have been uploaded to HMP DACC, wgs_community node 
and microb_metatranscriptome node, as tab-delimited text files.

Functional analysis of metagenomic and metatranscriptomic sequencing reads. 
For vaginal samples in the MOMS-PI PTB study, assignment of MGS and MTS 
reads to known genes/pathways was performed using ASGARD66, HUMAnN2  
(ref. 67) and ShortBRED68. The reads were also compared with appropriate databases 
(KEGG, GO, COG, etc.) using BLAST or other alignment tools to characterize 
functional data about these samples. HUMAnN2 output functional profiles of 
metagenomes and metatranscriptomes have been uploaded to HMP DACC, wgs_
functional node and microb_metatranscriptome node, as tab-delimited text files.

BVAB1 genome assembly from metagenomic reads. Starting with high-quality, 
trimmed, MGS reads from one sample with a high abundance of BVAB1, human 
reads were removed by alignment to the human hg19 reference genome using 
BWA alignment software. Human-filtered reads were digitally normalized with 
BBMap (https://sourceforge.net/projects/bbmap) with a target coverage of >40× 
to remove reads from highly repetitive elements of the genomes that may hamper 
the de novo assembly process, and to ensure that reads originating from PCR 
duplication were excluded before assembly. Reads were assembled with SPAdes 
v.3.8.0 using the ‘-meta’ option to generate a consensus assembly scaffold. Before 
clustering the scaffolds generated by SPAdes v.3.8.0, the human depleted reads were 
aligned back to the scaffolds using Bowtie2 with the ‘--very-sensitive’ option for 
global alignment. The resulting bam files were converted into ‘scaffold-to-average 
coverage’ maps using a customized Python script. These contigs were clustered 
into individual genomes using MyCC69, with tetramer frequencies coupled with 
the average coverage. Assembly identity was confirmed by alignment with 16S 
rRNA sequences from BVAB1. Reads were mapped back to individual MyCC 
clusters and then submitted to a new assembly using Newbler Assembler v.2.8. 
Where necessary, gaps were closed by sequencing of PCR amplicons using primers 
directed to contig ends. Coverage of the final genome averaged over 40× and 
completion was confirmed by the presence of all 40 highly conserved marker genes 
commonly used to assess genome assemblies69. Genome sequences were annotated 
with in-house pipelines using Prokka and ASGARD66.

TM7-H1 genome assembly from metagenomic reads using PacBio. DNA from a 
sample with high proportional abundance of TM7-H1 was sent to Pacific Biosciences 
for PacBio sequencing, using the TdT protocol, which is suitable for sequencing low-
input samples. An HGAP metagenome assembly was performed using a white list 
to exclude reads mapped to human, which yielded three TM7-H1 contigs. Genome 
sequences were annotated with in-house pipelines using Prokka and ASGARD66.

Mapping of metagenomic and metatatranscriptomic sequencing reads to a 
customized vaginal genome database representing 56 STIRRUPS taxa. We 
curated a custom database of vaginal genomes for 56 taxa identified in the 16S rRNA 
dataset that had a 0.1% average proportional abundance or for which at least 5% of 
samples were present at 0.1%. We also included reference genomes for Chlamydia 
trachomatis and Neisseria gonorrhoeae. Reference genomes are not available for 
several STIRRUPS taxa that met one or both of these criteria: Bacteroides coagulans, 
Clostridiales BVAB2, Dialister cluster 51, Dialister propionicifaciens, Lachnospiraceae 
OTU33, Prevotellaceae OTU61 and Proteobacteria OTU-T1. An average of 95.2% 
of MGS reads from samples in the full-term cohort and 94.3% of MGS reads from 
samples in the preterm cohort were identified as human (see Extended Data Fig. 4). 
A significantly smaller percentage of MTS reads (that is, an average of 30.0% and 
32.8% in the full-term and preterm cohorts, respectively) were identified as human. 
This likely reflects the sampling of dead or dying vaginal epithelial cells. Bowtie2 
default parameters were used to map filtered, non-human-read MTS and MGS reads 
to the customized vaginal genome database. All genomes were reannotated using 
Prokka. MacSysFinder was used to identify genes involved in bacterial secretion 
systems in the genomes in the reference database70. FeatureCounts was used to 
count paired-end reads where both ends mapped to non-ribosomal genes (coding 
sequences, transfer RNAs and transfer-messenger RNAs). Ribosomal genes were 
not included because we were interested in testing candidate taxa using other genes 
to build confidence that identification of candidate taxa was not dependent on 16S 
rRNA microbiome-profiling protocol choices. Ribosomal genes were thus classified 
as unassigned, no features. Chimeras were excluded, only primary alignments 
were mapped and duplicate reads were excluded. Paired MGS and MTS data were 
available for 41 women who delivered preterm and 81 term controls.

To confirm that the microbial signatures of PTB identified using 16S rRNA 
data were not attributable to protocol choices or protocol biases, we used MGS and 
MTS data to support these findings. The MGS data and 16S rRNA profiles were 
typically generated from the same DNA preparations, but they used independent 
sequencing strategies and bioinformatics and analysis methods. The MTS data 
were generated from vaginal swab samples collected in parallel with those used 
for DNA extractions, but the downstream protocol was entirely different. We 
analyzed one time point per participant, with a mean gestational age of sampling 
at 25 weeks for the preterm cohort and 26 weeks for the full-term cohort, and used 
a global scaling approach to normalize to all genes in the 56 taxa in our database. 
DESeq2 (ref. 71) was used to compare term and preterm cohorts using an organism-
independent, global-scaling approach; genes with fewer than 1,000 total mapped 
genes across samples were excluded from analysis. Note that, with global scaling, 
it is not possible to differentiate differences caused by differential abundance and 
those due to differential expression in MTS data. Thus, read counts mapping to a 
bacterial gene from a specific taxon were normalized to the total number of reads 
mapping to all bacterial genes in the database.

Given that our MTS results reflect findings from 16S rRNA microbiome 
analyses, the results are most likely largely driven by differential abundance 
between term and preterm cohorts. For comparative analyses across 16S rRNA, 
MGS and MTS, the proportional abundance was calculated based on the 56 taxa 
that could be measured across all three approaches. To calculate the taxonomic 
proportional abundance for an MGS or MTS sample, the sum of reads mapped 
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to genes for a given taxon was divided by the total number of reads mapped to all 
bacterial genes in the database. For this analysis, the 16S rRNA counts for a sample 
were renormalized by dividing the total number of reads mapped to a taxon by 
the total reads mapped to all taxa represented in the custom genome database, to 
which the MGS and MTS samples were mapped.

Metabolic modeling. Draft constraint-based metabolic models72 for TM7-H1, 
BVAB1 and L. crispatus were generated using functional annotation information 
with Enzyme Commission numbers to describe function and KEGG IDs for 
nomenclature. Model contents are provided in Supplementary Information File 
6 as .xls files and mapping files are provided as .xml files. Draft models have not 
been gap filled, given that most of these organisms are poorly characterized, and 
previously studied species of TM7 have been found to be non-free living.

MOMS-PI PTB study: cytokine profiling. The Bio-Plex Pro Human Cytokine 
27-plex Assay panel (M50-0KCAF0Y, Bio-Rad) was used to measure cytokine 
concentrations according to the manufacturer’s protocol. Briefly the frozen vaginal 
swab samples were thawed on ice and centrifuged at 10,000g for 10 min at 4 °C 
and diluted fourfold in 100 mM Tris buffer, pH 7.5. The assay was carried out on a 
black 96-well plate (10021013, Bio-Rad), and 50 µl of cytokine standard, interassay 
QC (described below) and sample were added in duplicate to appropriate wells. 
The Bio-Plex MAGPIX Multiplex Reader was used for data acquisition with 
default settings. Bio-Plex Manager v.6.0 software was used for data analysis using 
five-parameter logistic (5-PL), non-linear regression model on optimization for all 
analytes within 70–130% of the recovery range.

The interassay QC control was prepared from lipopolysaccharide-stimulated 
cell culture medium. Briefly, VK2/E6E7 (American Type Culture Collection 
(ATCC) CRL-2616) cells were initially grown in T75 flasks in Dulbecco’s modified 
Eagle’s medium/F-12 supplemented with 10% FBS (11320–033, 26140079, 
ThermoFisher) at 37 °C, 5% CO2 to confluency. These cells were trypsinized and 
reseeded at a concentration of 3 × 105 cells ml–1 per well on a 24-well plate (82050–
892, VWR). After 24 h, the medium was replaced with the fresh medium containing 
100 ng ml–1 lipopolysaccharide (L2630-10MG, Sigma). Twenty-four hours post-
lipopolysaccharide treatment, the cell culture medium was harvested, pooled and 
centrifuged at 3,000g  for 10 min at 4 °C. The resultant soluble fraction was aliquoted 
and stored at −80 °C for use as assay QC. Out-of-range cytokine concentration 
values were imputed with the upper or lower limit of detection for the specific 
cytokine where necessary. Nine cytokines (that is, IL-1β, eotaxin, IL-8, TNF-α, 
IL-17A, MIP-1β, IL-6, IP-10/CXCL10 and RANTES) had fewer than 30% out-of-
range values and were selected for analysis. Cytokine concentrations normalized per 
swab sample were uploaded to HMP DACC (host_cytokine node) as tab-delimited 
text files. Cytokine data from the MOMS-PI PTB study, the MOMS-PI TB study 
and the MOMS-PI Early Pregnancy study were not designed to be used in concert 
due to differences in lots of reagents and normalization protocols. Sub-study tags 
have been uploaded to the HMP DACC to discriminate samples by study.

MOMS-PI TB study: cytokine profiling. The Bio-Rad Bio-Plex Pro Human 
Cytokine 27-Plex Assay was employed with a Luminex 100/200 System to quantify 
cytokine levels in the vaginal samples. Frozen vaginal swab samples suspended in 
500 μl 100 mM Tris-HCl, pH 7.5, were thawed on ice and centrifuged at 10,000g for 
10 min at 4 °C. The Bio-Plex assay was conducted on samples and serial dilutions 
of standards in duplicate, according to the manufacturer’s instructions. Values 
were analyzed using a 5-PL, non-linear regression curve model. Cytokine values 
deemed out of range were assigned the upper or lower limit of detection for the 
specific cytokine. Cytokine concentrations were uploaded to the HMP DACC 
(host_cytokine node) as tab-delimited text files. The values at the DACC were 
not normalized to protein concentration as determined by the Bradford Assay39. 
Cytokine data from the MOMS-PI PTB study, the MOMS-PI TB study and the 
MOMS-PI Early Pregnancy study were not designed to be used in concert due to 
differences in lots of reagents and normalization protocols. Sub-study tags have 
been uploaded to the DACC to discriminate samples by study.

MOMS-PI Early Pregnancy study: cytokine profiling. The Bio-Rad Bio-Plex Pro 
Human Cytokine 27-Plex Assay was employed with a Luminex 100/200 System 
to quantify cytokine levels in the vaginal samples. Frozen vaginal swab samples 
suspended in 500 μl 100 mM Tris-HCl, pH 7.5, were thawed on ice and centrifuged at 
10,000g for 10 min at 4 °C. The Bio-Plex assay was conducted on samples and serial 
dilutions of standards in duplicate, according to the manufacturer’s instructions. 
Values were analyzed using a 5-PL, non-linear regression curve model. Cytokine 
values deemed out of range were assigned the upper or lower limit of detection for 
the specific cytokine. IL-2, IL-5 and IL-15 levels were below the limit of detection 
in >50% vaginal samples and were not included in subsequent analyses. Although 
biological replicates could not be performed due to the effects of multiple freeze–
thaw cycles on sample viability, the intra-assay coefficient of variation was found to 
be acceptable at <7% for all cytokines. Cytokine concentration (pg ml–1) was divided 
by total protein concentration (mg ml–1) to yield normalized cytokine concentration 
(pg cytokine mg protein–1) for each sample. Samples for which total protein could 
not be determined were not included in the analysis. Cytokine concentrations were 
uploaded to the HMP DACC (host_cytokine node) as tab-delimited text files. The 

values at the DACC were not normalized to protein concentration as determined by 
the Bradford Assay39. Cytokine data from the MOMS-PI PTB study, the MOMS-PI 
TB study and the MOMS-PI Early Pregnancy study were not designed to be used in 
concert due to differences in lots of reagents and normalization protocols. Sub-study 
tags have been uploaded to the DACC to discriminate samples by study.

Early Pregnancy study: lipidome profiling of vaginal samples. A pilot study 
was performed for lipidome profiling of vaginal samples. For eicosanoid and 
sphingolipid quantification, an equal volume of ethanol containing 10 ng of 
eicosanoid internal standards or methanol containing 50 pmol of sphingolipid 
internal standards was added to clarified vaginal swab contents dispersed in 
phosphate-buffered saline containing 0.01% butylhydroxytoluene. Eicosanoid 
internal standards consisted of 30 deuterated analytes, including (d4) 6-keto-
prostaglandin (PG)F-1α, (d4) PGF-2α, (d4) PGE-2, (d4) PGD-2, (d4) LTB4 
(leukotriene B4), (d4) thromboxane (Tx)B2, (d4) LTC4, (d5) LTD4, (d5) LTE4, 
(d8) 5-hydroxyeicosatetranoic acid, (d8) 15-hydroxyeicosatetranoic acid, (d8) 
14,15-epoxyeicosatrienoic acid, (d8) arachidonic acid and (d5) eicosapentaenoic 
acid. Sphingolipid internal standards consisted of d17 sphingosine, sphinganine, 
sphingosine-1-phosphate, sphinganine-1-phosphate and d18:1/12:0 ceramide-1-
phosphate, sphingomyelin, ceramide and monohexosylceramide (Avanti). After 
centrifugation at 12,000g for 20 min, the resultant mixture was subjected to 
UPLC electrospray ionization mass spectrometry/mass spectrometry analysis 
using a hybrid, triple quadrupole, linear ion trap mass analyzer (ABSCIEX 6500 
QTRAP) via multiple-reaction monitoring. Detailed separation, elution and 
ionization conditions have been previously described73 and are summarized in 
the Supplementary Appendix 1. Spectral data were analyzed using MultiQuant 
software (ABSCIEX) and quantification was carried out by comparison against 
known quantities of internal standards and a seven-point dilution curve. The 
values were uploaded as tab-delimited text files to the HMP DACC. The values 
at the DACC were not normalized to protein concentration as determined by the 
Bradford Assay39. Cytokine data from the MOMS-PI PTB study, the MOMS-PI 
TB study and the MOMS-PI Early Pregnancy study were not designed to be used 
in concert due to differences in lots of reagents and normalization protocols. Sub-
study tags have been uploaded to the DACC to discriminate samples by study.

Community state types/vagitypes. Vaginal 16S rRNA profiles were assigned to 
community state types (CSTs) based on the taxon with the largest proportion of 
reads. Samples in which the largest proportion was less than 30% were not assigned 
a CST/vagitype. This ‘predominant taxon’ rule has been shown to exhibit over 90% 
agreement with clustering-based methods across a variety of vaginal microbiome 
datasets46, and yet is not population or dataset dependent and is therefore more 
conducive to use in a clinical setting. Differences in the numbers of L. crispatus 
CSTs among the PTB and TB cohorts were tested using a Fisher’s exact test.

Markov chain analysis. The R package msm was used to fit a continuous-time 
Markov chain model for CST transitions. The model takes as input the subject, 
CST/vagitype and gestational age in days for each sample. The states were  
L. crispatus, L. iners, BVAB1, G. vaginalis and ‘Other’. The pregnancy outcome 
(that is, preterm or term birth) was included as a covariate. To derive confidence 
intervals for maximum likelihood estimates of transition probabilities, the set 
of transitions modeled was restricted to those in which at least four transitions 
were observed between subsequent visits for individuals in the study. Without 
this restriction, the maximum likelihood method does not converge. A stationary 
distribution for each group was estimated by setting the time to 100,000 days. 
Dynamic balance was checked for the one-trimester transition probabilities by 
taking the difference between the forward and reverse transition probabilities.

Filtering out low-abundant taxa. As the first step in analyzing each dataset of 
vaginal 16S rRNA profiles, we analyzed the abundance of each taxa present in the 
profiles, and removed from further consideration low-abundant species. We used 
two abundance criteria: we retained taxa that either (1) 5% of the profiles exhibited 
an abundance of at least 1%, or (2) at least 15% of profiles exhibited an abundance 
of at least 0.1%. Taxa that failed to meet both (1) and (2) were removed.

Univariate analysis to identify taxa very different in abundance in PTB and 
TB cohorts. We analyzed vaginal 16S rRNA profiles from 135 participants, 45 
who delivered preterm and 90 who delivered term. The microbiome profile of the 
earliest sample from each of these women was used in this analysis. In this dataset, 
26 taxa remained after filtering out the low-abundance taxa. For each of these 26 
most abundant taxa, we performed a Mann–Whitney U-test to identify important 
differences in the presence and abundance in PTB and TB cohorts. For this 
analysis, abundance values below 0.00001 were rounded to zero. Taxa abundance 
was considered greatly different between cohorts if the q value was less than an 
FDR of 5% after correction via the Benjamini–Hochberg procedure. For each taxon 
we also calculated the median and the 75th percentile in the PTB and TB cohorts.

Longitudinal models. A GAMM74 incorporating BMI, ethnicity (African, 
European), pregnancy outcome (preterm, full term), a smoother for gestational 
age and a random subject effect was used to longitudinally model log-transformed 
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relative abundances of vaginally relevant taxa. Effect contributions were 
determined using analysis of variance tests. The model is described by the formula:

γ

ε

= β + β + β + β + β + × +

+

I flog(Abundance) PO BMI pH (ga ) POij I ij ij ij i I

ij

0 1 2 3 4 ethnicity

where log(Abundance)ij is the log-transformed taxa relative abundance for the jth 
observation of the ith subject, PO is pregnancy outcome (preterm, full term), pH 
is vaginal pH, Iethnicity is an indicator variable that takes on the value 0 for subjects of 
African ancestry and 1 for subjects of all other ancestries, ga is gestational age, f(.) 
is a smooth function, γi is the random effect for the ith subject and εij is the error 
term.

The degree of smoothness for gestational age was estimated by restricted 
maximum likelihood75. Models were fit using the gamm4: GAMMs using mgcv 
and lme4 package in R, released by Wood and Scheipl in 2017.

Canonical correlation analysis of cytokines and vaginal microbiome profiles. 
An integrative analysis of both log-transformed 16S rRNA survey data and 
log-transformed cytokine data was performed using sCCA76. Classic canonical 
correlation analysis77 explores the correlation between two sets of quantitative 
variables measured on the same subjects. The sCCA introduces an l1-penalization 
term to handle the case of more variables than observations. Nine cytokines, with 
fewer than 30% out-of-range values, were selected for analysis (that is, IL-1β, 
eotaxin, IL-8, TNF-α, IL-17A, MIP-1β, IL-6, IP-10/CXCL10, RANTES). Out-of-
range cytokine concentration values were then imputed with the upper or lower 
limit of detection for the specific cytokine where appropriate. For each subject, the 
observation corresponding to the earliest gestational age per trimester was used for 
analysis. We performed sCCA separately for full-term and preterm subjects using 
the sgcca function in the R package mixOmics78.

The results of sCCA are displayed in a correlation circle plot77. The coordinates 
of the plotted points (variables) are the correlations between the variables and their 
canonical variates. Variables that have a strong positive correlation are projected 
close to each other on the plot, whereas variables that are negatively correlated are 
plotted opposite each other. The greater the distance from the origin, the stronger 
the relationship among variables77. The correlation circle plots are constructed 
using the plotVar function in the R package mixOmics.

Taxon co-occurrence. Bacterial taxa were determined to be present if they 
comprised ≥0.1% of the total vaginal microbiome profile. We utilized the statistical 
tool REBACCA79 to mitigate the effects of relative constraint. REBACCA was run 
using 50 bootstraps and a visualization of bacterial correlations was generated 
using Gephi. Correlations with more than 0.3 or less than −0.3 are shown, with 
negative correlations in red and positive correlations in blue. Edge weights are 
representative of the strength of correlation between taxa and the four major 
predictive taxa, shown in gray.

Predictive modeling of PTB using early pregnancy microbiome profiles. We 
constructed a linear predictive model of PTB as follows: from the full cohort, 
we selected subjects who had at least one vaginal 16S rRNA sample early in the 
pregnancy, in days 42–167 (inclusive) of gestation. A total of 31 PTB and 59 TB 
subjects had at least one sample in this time window; if multiple samples were 
present in that window, we used the earliest sample.

We first filtered out low-abundant species in this dataset: 25 passed the 
selection criteria. For these taxa, the abundance data were soft-thresholded 
with a 0.001 threshold, to reduce the impact of statistical noise resulting from 
low-abundance values, by subtracting 0.001 from the abundance and setting 
all resulting negative values to 0, and log-transformed through a transform 
log10((abundance + 0.001)/0.001), where dividing by 0.001 shifts the logarithm 
values for abundances in the zero (0.0) to 1 (1.0) range from negative to  
non-negative values. Ten taxa were significantly different between the  
PTB and TB cohorts.

The model construction uses a two-step procedure: first, we applied a Mann–
Whitney U-test to all species that survived the abundance-based filtering criteria, 
retaining species with a two-sided P value of 0.05 or less. Based on these species, 
the predictive model was trained using logistic regression with L1 regularization80, 
to reduce the impact of collinearity between species and the resulting sign reversals 
and false detections. Regularized logistic regression finds a vector of taxa weights  
w that minimizes: Σiln(1 + −e y w x( )i

T
i ) + C ||w||1 over the training set of samples  

(xi, yi). The constant C was selected based only on samples from the training set, 
using grid search and nested cross-validation.

The statistical significance of the model in the form of a P value was estimated 
using a permutation test, consisting of training 10,000 models on data with 
the class variable randomly permuted before processing, and comparing the 
distribution of the 10,000 AUROC values with the AUROC values of the original 
model trained using unperturbed class variable. Performance of the model on 
previously unseen samples was assessed using the leave-one-out method. We 
assessed sensitivity, specificity and AUROC, as implemented in the Python scikit-
learn package81.

The PTB predictive score was defined as: 0.775 log10(Samn) + 0.751 
log10(BVAB1) + 0.116 log10(TM7) + 0.011 log10(Pcl2). To avoid negative values of 
the logarithm for abundance data on the [0,1] scale, we used the logarithm in the 
form log10((abundance + 0.001)/0.001), where abundance is soft-thresholded at 
0.001, that is, 0.001 is subtracted from abundance values, and negative values are 
replaced by 0. This transformation shifts log(abundance) from the negative [−3,0] 
range to the non-negative [0–3] range, but does not affect the relative positions of 
the samples.

Predictive modeling of PTB using clinical variables. For comparison with the 
microbiome-based predictive model, we also trained a predictive model using only 
clinical variables, without any input from the subject’s microbiome. We defined the 
following 11 clinical variables: short cervix: (YES/NO), cerclage (YES/NO), vaginal 
pH, BMI, progesterone (YES/NO), gravidity, parity, gravidity minus parity, history 
of miscarriage or stillbirth (YES/NO), history of PTB (YES/NO), use of antibiotics 
in 6 months before sampling. YES/NO features were converted to 1 = YES, 0 = NO. 
Other features were normalized to be in the 0–1 range by subtracting the minimal 
value, and then dividing by the difference between minimum and maximum in the 
dataset. The training of the clinical information-based predictive model operates 
in two stages, as with the microbiome-based model. First, features are filtered 
through a univariate Mann–Whitney U-test. Second, a regularized linear model 
is trained using features that remain after filtering. The leave-one-out estimates of 
the predictive power of the clinical information-based model are: AUROC 0.764, 
sensitivity 69.5%, specificity 74.2%.

Cross-study comparison cohort selection. We performed a systematic literature 
review to identify previous studies that used taxonomic markers to assess the vaginal 
microbiome and PTB22–27,30–37,57. Three studies included cohorts of pregnant women 
who were predominantly of African descent, were at high risk for PTB and had 
publicly available 16S rRNA reads25,27,30 (bioProjects: PRJNA242473, PRJNA294119, 
PRJNA393472-(University of Alabama (UAB) cohort). De-identified clinical data 
for bioProject PRJNA294119 was kindly made available by Molly Stout. There 
was substantial variation in the inclusion and exclusion criteria for the case and 
control groups across studies. For example, Stout et al.27 excluded subjects taking 
supplemental progesterone from the study, whereas, in contrast, Callahan et al.25 
included only subjects receiving supplemental progesterone in the UAB high-risk 
cohort. The inclusion criteria for PTB differed substantially; the study by Romero 
et al.30 included only participants who experienced spontaneous labor or preterm 
premature rupture of membranes and delivered before 34 weeks. In contrast, 
participants with indicated PTB (for example, pre-eclampsia) accounted for most 
PTBs in the Stout et al.27 study. There were similar differences in the control groups 
across studies. There were critical differences across all aspects of experimental 
design: sample collection, hypervariable region(s) of 16S rRNA examined, primer 
selection and PCR, sequencing technology and bioinformatics pipelines.

Cross-study comparison cohort matching. In the present study, the selected 
cases were all spontaneous PTBs that occurred before 37 weeks of gestation; early 
term births (that is, those delivered between 37 weeks and 38 weeks 6 days) were 
excluded from the controls. To identify the most suitable replication cohorts 
available for the present study, we reanalyzed data generated from a subset of 
samples collected from women who experienced spontaneous PTB before 37 weeks 
of gestation and matched term controls delivered at a gestational age of 39 weeks 
or later. Only cases/controls with at least one sample, with a minimum of 1,000 
reads after trimming and quality filtering, were included. Controls were matched 
2:1 to cases from the same original study, based on the matching criteria used in 
the present study, as far as possible. This included ancestry/ethnicity for all three 
studies and age for two of the studies. Age was not available the Stout et al. study27 
(that is, PRJNA294119). Annual household income was not used for matching 
because it was not available for any of the three studies. In the high-risk cohort 
from the Callahan et al.25 study (that is, PRJNA393472-UAB cohort), there was 
not a sufficient number of controls who met the criteria, and therefore cases for 
the available controls to preserve the matching ratio. For the Romero et al.16 study, 
there was an excess of available controls, so we restricted selection of controls 
to those who had a sample collected before 37 weeks of gestation. Selection of 
rematched cases/controls was performed blinded to other data.

Replication cohort processing of 16S rRNA data. We applied a standardized 
bioinformatics pipeline to the 16S rRNA reads from the three original studies to 
harmonize with the present study as far as possible. Reads were downloaded from 
the SRA (bioProjects: PRJNA242473, PRJNA294119, PRJNA393472-UAB cohort). 
Cutadapt was used to trim adapters and primers, if present. We applied harmonized 
quality filtering across the studies. For studies using the 454 Roche sequencing 
technology, we applied filtering criteria established by our group in the Vaginal 
Human Microbiome Project which has been successfully used with our established 
STIRRUPS taxonomic classification47 and statistical analyses. Thus, we trimmed 
from the 3′-end of the read until the average quality score of the last 10 bp was 20 
or more. If the resulting read was less than 200 bp in length, it was discarded. For 
the Stout et al.27 study, we analyzed only the V1–V3 reads. For the Callahan et al.25 
study, the reads were trimmed and quality filtered, and forward and reverse reads 
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were merged before upload to the SRA. The quality filtering criteria used for the 
Illumina HiSeq data in that original study (that is, each read of 235 bp or 245 bp 
needed to have fewer than two expected errors) was consistent with the filtering 
criteria applied to the Illumina MiSeq data in the present study (that is, MEEP score 
cutoff of 1). The forward and reverse reads both covered the V4 region, so we used 
only the forward reads from that study for taxonomic analysis. For all studies, only 
samples with a minimum of 1,000 quality-filtered reads were used in downstream 
analyses. A total of 85 of the 149 samples in the Stout et al. study met this QC 
threshold and 348 of 349 samples in the Romero et al.16 study. All 1,280 samples 
from the Callahan et al. UAB cohort25 had a minimum of 1,000 quality-filtered 
reads. Clinical data were available for two additional samples in the Callahan et al. 
UAB cohort for which sequence data were not available at the SRA.

Cross-study comparison cohort taxonomic classification. Although the primers 
used in the Stout et al.27 and Romero et al.16 studies were different from each 
other and those used in the present study, the same V1–V3 hypervariable region 
was amplified. Thus, the trimmed quality-filtered reads from the Romero et al.30 
and the Stout et al.27 studies were run through the STIRRUPS pipeline, using the 
same database as the present study. We do not have a curated custom database 
of vaginally relevant taxa for the V4 hypervariable region. Thus, we curated a 
small V4 database (https://github.com/Vaginal-Microbiome-Consortium/PTB) 
corresponding to our V1–V3 database for the taxa identified as very different 
between cases and controls in the present study. We used the STIRRUPS pipeline 
to align reads from the Callahan et al. UAB cohort25 against this small V4 database 
with taxa of interest.

Notably, in the Stout et al. replication cohort, all four taxa used in our 
predictive model (S. amnii, BVAB1, TM7-H1, Prevotella cluster 2) had higher 
abundance in the PTB group than in the TB group. Moreover, for 8 of the 14 taxa 
identified as differing between the PTB and TB groups in the analyses of our 
cohort, the difference in medians between the PTB and TB groups in the Stout 
cohort occurred with the same directionality as in our cohort. Of the remaining six 
taxa, four were infrequent and had medians below the abundance cutoff threshold 
in both TB and PTB groups of the Stout et al. cohort (that is, TM7-H1, BVAB2, 
Dialister micraerophilus, P. amnii), but they still had a higher abundance range in 
PTB than in TB groups, as in our cohort. Only Achr and Dcl51 showed an opposite 
trend of medians in the Stout et al. cohort compared with ours. In the Callahan 
et al. replication cohort, three of the four taxa used in our predictive model had 
a higher median in the PTB group than in the TB group, similar to our cohort. 
Moreover, in 11 of 14 taxa, the median between the PTB and TB groups in the 
Callahan et al. cohort differed in the same direction as in our cohort. TM7 had a 
median below the cutoff threshold. Only Dialister cluster 51 and Megasphaera type 
1 OTU70 showed an opposite trend in the medians of the Callahan et al. cohort 
compared with ours.

Nucleotide sequence accession numbers. The genome sequences of BVAB1 
S1 (PQVO000000) and TM7-H1 E1 (CP026537) are available at the GenBank 
database.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Open-access data including raw 16S rRNA sequences, cytokine data and 
limited metadata are available at the HMP DACC (https://portal.hmpdacc.org). 
Controlled-access data including raw MGS data, raw MTS data and metadata for all 
subjects analyzed in this study are available at National Center for Biotechnology 
Information’s controlled-access dbGaP (study no. 20280; accession ID phs001523.
v1.p1) and the SRA under BioProject IDs PRJNA326441, PRJNA326442 and 
PRJNA326441. The genomes of TM7-H1 (CP026537) and BVAB1 (PQVO000000) 

have been submitted to GenBank. Access to additional fields can be requested 
through the RAMS Registry (https://ramsregistry.vcu.edu). Additional project 
information is available at the project’s website (http://vmc.vcu.edu/momspi).

Code availability
The custom code is available at https://github.com/Vaginal-Microbiome-
Consortium/PTB.

References
 62. Parikh, H. I., Koparde, V. N., Bradley, S. P., Buck, G. A. & Sheth, N. U. 

MeFiT: merging and filtering tool for illumina paired-end reads for 16S 
rRNA amplicon sequencing. BMC Bioinforma 17, 491 (2016).

 63. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME 
improves sensitivity and speed of chimera detection. Bioinforma 27, 
2194–2200 (2011).

 64. Koparde, V. N., Parikh, H. I., Bradley, S. P. & Sheth, N. U. MEEPTOOLS: a 
maximum expected error based FASTQ read filtering and trimming toolkit. 
Int. J. Comput. Biol. Drug Des. 10, 237–247 (2017).

 65. Segata, N. et al. Metagenomic microbial community profiling using unique 
clade-specific marker genes. Nat. Methods 9, 811–814 (2012).

 66. Alves, J. M. P. & Buck, G. A. Automated system for gene annotation and 
metabolic pathway reconstruction using general sequence databases. Chem. 
Biodivers. 4, 2593–2602 (2007).

 67. Langille, M. G. I. et al. Predictive functional profiling of microbial 
communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 
814–821 (2013).

 68. Kaminski, J. et al. High-specificity targeted functional profiling in microbial 
communities with ShortBRED. PloS Comput. Biol. 11, e1004557 (2015).

 69. Lin, H.-H. & Liao, Y.-C. Accurate binning of metagenomic contigs via 
automated clustering sequences using information of genomic signatures and 
marker genes. Sci. Rep. 6, 24175 (2016).

 70. Abby, S. S. et al. Identification of protein secretion systems in bacterial 
genomes. Sci. Rep. 6, 23080 (2016).

 71. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

 72. Fong, S. S. Computational approaches to metabolic engineering utilizing 
systems biology and synthetic biology. Comput. Struct. Biotechnol. J. 11, 
28–34 (2014).

 73. Simanshu, D. K. et al. Non-vesicular trafficking by a ceramide-1-phosphate 
transfer protein regulates eicosanoids. Nature 500, 463–467 (2013).

 74. Lin, X. & Zhang, D. Inference in generalized additive mixed modelsby using 
smoothing splines. J. R. Stat. Soc. Ser. B 61, 381–400 (1999).

 75. Harville, D. Maximum likelihood approaches to variance component 
estimation and to related problems. J. Am. Stat. Assoc. 72, 320–338 (1977).

 76. Witten, D. M., Tibshirani, R. & Hastie, T. A penalized matrix decomposition, 
with applications to sparse principal components and canonical correlation 
analysis. Biostatistics 10, 515–534 (2009).

 77. González, I., Cao, K.-A. L., Davis, M. J. & Déjean, S. Visualising associations 
between paired ‘omics’ data sets. BioData Min. 5, 19 (2012).

 78. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: an R package for 
’omics feature selection and multiple data integration. PLoS Comput. Biol. 13, 
e1005752 (2017).

 79. Ban, Y., An, L. & Jiang, H. Investigating microbial co-occurrence patterns 
based on metagenomic compositional data. Bioinforma 31, 3322–3329 (2015).

 80. Ng, A. Y. Feature selection, L1 vs. L2 regularization, and rotational invariance. 
In Proc. 21st International Conference on Machine Learning 78 (ACM, 2004); 
https://doi.org/10.1145/1015330.1015435

 81. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. 
Res. 12, 2825–2830 (2011).

NATURE MEDICINE | www.nature.com/naturemedicine

https://github.com/Vaginal-Microbiome-Consortium/PTB
https://www.ncbi.nlm.nih.gov/gquery/?term=PQVO000000
https://www.ncbi.nlm.nih.gov/gquery/?term=CP026537
https://portal.hmpdacc.org/
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001523.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001523.v1.p1
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA326441
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA326442
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA326441
https://www.ncbi.nlm.nih.gov/nuccore/CP026537
https://www.ncbi.nlm.nih.gov/nuccore/PQVO000000
https://ramsregistry.vcu.edu
http://vmc.vcu.edu/momspi
https://github.com/Vaginal-Microbiome-Consortium/PTB
https://github.com/Vaginal-Microbiome-Consortium/PTB
https://doi.org/10.1145/1015330.1015435
http://www.nature.com/naturemedicine


ArticlesNATURE MEDIcINE

Extended Data Figure 1 | Species-level vaginal microbiome composition in women who experience TB or PTB. Stacked bar charts illustrating the vaginal 
microbiome profiles from 16S rRNA surveys of one sample per trimester from each pregnancy. Samples are ordered according to decreasing relative 
abundance. Twenty-nine abundant taxa of interest are shown with all others pooled into ‘Other’.
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Extended Data Figure 2 | Alpha diversity measures for PTB and TB cohorts. a, Shannon index and inverse Simpson index for the cross-sectional 
cohort in Fig. 2 (PTB n = 45, TB n = 90) shows that alpha diversity is significantly higher (P = 0.0026, P = 0.12, respectively) in the preterm cohort using 
two-sided Wilcoxon’s test followed by a P value adjustment using Bonferroni’s correction with 5% FDR. Boxes show median and interquartile range; 
whiskers extend from minimum to maximum values within each cohort. b,c Shannon index (b) and inverse Simpson index (c) diversity measures are 
shown with comparisons by trimester (TB first trimester: n = 30; PTB first trimester: n = 13; TB second trimester: n = 64; PTB second trimester: n = 35; 
TB third trimester: n = 90; PTB third trimester: n = 40). The Kruskal–Wallis two-sided test (analysis of variance) was used followed by post-hoc pairwise 
comparison with Bonferroni’s correction and 5% FDR. Comparison within trimesters was performed using two-sided Wilcoxon’s test with Bonferroni’s P 
value adjustment. Boxes show median and interquartile range; whiskers extend from minimum to maximum values within each cohort. For the trimester 
comparisons, no tests were significant.
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Extended Data Figure 3 | Taxa that significantly differ in PTB and TB cohorts. The distributions of proportional abundance of taxa greatly differ in 
PTB (n = 31) and TB (n = 59) cohorts; the earliest sample available for each subject within the first 24 weeks of pregnancy was used for each subject. 
Abundance values below 0.001 were rounded down to 0. The taxa are: BVAB1: Lachnospiraceae BVAB1, Pcl2: Prevotella cluster 2, Mty1: Megasphaera 
OTU70 type1, Samn: Sneathia amnii, TM7: TM7-H1, Dcl51: Dialister cluster 51, Pamn: Prevotella amnii, BVAB2: Clostridiales BVAB2, Dmic: Dialister 
micraerophilus and P142: Parvimonas OTU142. These 10 taxa have P <0.05 to support a significant difference in proportional abundance between PTB 
and TB cohorts using a Mann–Whitney U-test (two-sided) and the Benjamini–Hochberg correction procedure with an FDR of 5%. Boxes show median 
and interquartile range; whiskers extend from minimum to maximum values within each cohort. b,c, Scatter plot of the PTB predictive score returned by 
the model (horizontal axis) plotted against gestational age at birth (vertical axis). Each point corresponds to a sample from a subject: red, PTB subjects 
(n = 31); blue, TB subjects (n = 59). c, Shows more detailed view of the region where most (48 of 59) of the TB samples are located.
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Extended Data Figure 4 | Assignment of metatranscriptomics and metagenomics quality-filtered reads in PTB and TB cohorts. Non-human reads were 
mapped to a custom database corresponding to 56 bacterial taxa. Values are shown as the percentage abundance.
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Extended Data Figure 5 | Metabolic pathway abundance by vagitype. a, Stacked barplots showing the vaginal microbial profiles from 16S rRNA surveys; 
b, the metabolic pathway abundances from paired MGS (top panel) and MTS (bottom panel) of vaginal samples collected during pregnancies of 90 
women who delivered at term (≥39 weeks) (left) and 45 women who delivered preterm (<37 weeks) (right). Results show the top 10 metabolic pathways 
calculated by HUMAnN2. c,d, The presence of the UDP-N-acetyl-d-glucosamine biosynthesis pathway and non-oxidative branch of pentose phosphate 
pathway differ between L. crispatus and other vagitypes as measured by MGS data (c) (L. crispatus UDPNAGSYN: n = 32, Other UDPNAGSYN: n = 59; L. 
crispatus NONOXYPENT-PWY: n = 14, Other NONOXYPENT-PWY: n = 138; L. crispatus PWY-5100: n = 25,Other PWY-5100: n = 156) and MTS data (d) 
(L. crispatus UDPNAGSYN: n = 33, Other UDPNAGSYN: n = 117; L. crispatus NONOXYPENT-PWY: n = 33, Other NONOXYPENT-PWY: n = 157; L. crispatus 
PWY-5100: n = 33,Other PWY-5100: n = 159). Two-sided Wilcoxon’s P test (P <0.05) with Bonferroni’s adjustment at a 5% FDR threshold was used. Boxes 
show median and interquartile range; whiskers extend from minimum to maximum values within each cohort.

NATURE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles NATURE MEDIcINE

Extended Data Figure 6 | Comparison of the proportional abundance of taxa by 16S rRNA (left), metagenomics (middle) and metatranscriptomics 
(right) in term (blue) and preterm (red) cohorts. Proportional abundance is shown relative to the 56 bacterial taxa that were measured across all three 
assays. The 16S rRNA, metagenomics and metatranscriptomics measures from PTB (n = 41) and TB (n = 81) were from a single time point per participant. 
The y axis is scaled based on the maximum proportional abundance for the taxon.

NATURE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNATURE MEDIcINE

Extended Data Figure 7 | Genes differing in metagenomic and metatranscriptomic data between term and preterm cohorts. a, Volcano plot depicting 
genes that significantly differ between term (n = 41) and preterm (n = 81) cohorts in metagenomics data. Genes mapping to PTB-associated taxa, the L. 
crispatus cluster and four other common taxa that significantly differ at Padj < 0.05 (two-sided) with FDR correction are shown in dark red, dark blue and 
dark green, respectively. b, Comparison of proportional abundance of G. vaginalis in preterm (red) and term (blue) vaginal samples as assayed by 16S rRNA 
(left), metagenomics (middle) and metatranscriptomics (right), sorted by 16S rRNA (top), metagenomics (middle) and metatranscriptomics (bottom) 
data. c, Scatter plot of the abundance of G. vaginalis by metagenomics (x axis) and abundance of G. vaginalis by metatranscriptomics (y axis) in pregnant 
women who delivered term (blue) or preterm (red). Two-sided Wilcoxon’s test of the ratio of the log-transformed proportions (log(metatranscriptomics G. 
vaginalis proportion)/log(G. vaginalis metagenomics proportion)) showed a significant difference between term and preterm groups (P = 0.01069).
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Extended Data Figure 8 | Genes predicted to encode secreted proteins or to be involved in bacterial secretion systems in metatranscriptomics 
and metagenomics datasets. Genes predicted to encode secreted proteins or to be involved in bacterial secretion systems that have very different 
transcript levels (a) or very different levels in metagenomics data (b) in term (n = 81) and preterm (n = 41) cohorts. Analysis was performed by mapping 
metatranscriptomics (a) or metagenomics (b) reads to a customized database of genomes representing 56 taxa. Comparative analysis was performed 
with DESeq2 using a global scaling approach. All genes with an FDR-adjusted Padj < 0.05 (two-sided test), which are also predicted to be involved in 
bacterial secretion as identified by MacSyFinder, are shown and colored by taxon.
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Extended Data Figure 9 | Distribution of sampling and gestational age at delivery across studies of the vaginal microbiome and PTB. The panels show 
the distribution of the gestational age at sampling (a) and gestational age at delivery (c) in preterm cases (left) and term controls (right) across four 
studies: the present study (top), the Stout et al. study, the Romero et al. study and the Callahan et al. UAB cohort (bottom), as originally published, and in 
b,d for the reanalyzed cohorts.
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Extended Data Figure 10 | Proportional abundance shown as a log scale of candidate taxa identified in the present study across four PTB cohorts. 
a–d, Abundance values below 0.001 were rounded down to 0. Boxes show median and interquartile range; whiskers extend from minimum to maximum 
values within each cohort for the present study (PTB n = 45, TB n = 90) (a), the Stout et al. replication cohort (PTB n = 5, TB n = 10) (b), the Romero et al. 
cohort (PTB n = 18, TB n = 36) (c) and the Callahan et al. UAB replication cohort (PTB n = 10, TB n = 20) (d). The Mann–Whitney U-test (two-sided) for 
difference in proportional abundance between the PTB and TB cohorts, corrected using the Benjamini–Hochberg procedure with an FDR of 5% did not 
show statistical significance for these taxa in the cohorts shown in b–d. The earliest sample available for each subject was used (f). Earliest samples for 
the original four cohorts are shown in e.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Custom code will be available at https://github.com/Vaginal-Microbiome-Consortium/PTB prior to publication. Open source software is 
described in the test.

Data analysis MeFiT for preprocessing of short read pair-end sequences, meep for quality filtering of paired-end sequences, QIIME for assignment of 
reads to Operational Taxonomic Units, Greengenes for 16S rRNA refrence sequences, UCHIME to screen for chimeric sequences, 
STIRRUPS using USEARCH for species-level classification of reads, bcl2fastq conversion software from Illumina for data demultiplexing, 
Adapter Removal tool v 2.1.3 to trim adapters, meeptools for quality trimming of reads, BWA for alignment of reads to reference 
sequences, MetaPhlAn2 for analysis of metagenomic and metatranscriptomic sequence, ASGARD, HUMAnN2 and ShortBRED for 
assignment of genes to pathways, BLAST for alignment of sequences, BBMap for normalizing of reads, SPAdes ver 3.8.0 for assembly of 
reads, Bowtie2 for alignment of reads to scaffolds, MyCC for clustering metagenomic contigs into specific taxonomic units, Newbler 
Assembler v 2.8 for assembly of reads, Prokka for gene annotation, HGAP for assembly of metagenomes from Pac Bio long read data, 
MacSysFinder was used to identify genes involved in bacterial secretion systems, FeatureCounts was used to count paired-end reads 
where both ends mapped to non-ribosomal genes, DESeq2 was used to compare term and preterm cohorts using an organism-
independent global-scaling approach, MultiQuant software was used for analysis of lipidomic spectral data, various version of R were 
used for statistical profiling, REBACCA statistical tool to mitigate effects of relative constrain, Gephi for visualization of bacterial 
correlations, and a variety of custom scripts (deposited at GitHub) were used to generate the figures in the manuscript. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Open-access data including raw 16S rRNA sequences, cytokine data and limited metadata are available at the HMP DACC (https://portal.hmpdacc.org/). Controlled-
access data including raw metagenomic sequences, raw metatranscriptomic sequences and metadata for all subjects analyzed in this study are available at NCBI's 
controlled-access dbGaP (study number: 20280; accession ID: phs001523.v1.p1) and the Sequence Read Archive (SRA) under BioProject ID PRJNA326441. The 
genomes of TM7-H1(CP026537) and BVAB1 (PQVO000000) have been submitted to GenBank. Access to additional fields can be requested through the RAMS 
Registry (https://ramsregistry.vcu.edu). Additional project information is available at the project's website (http://vmc.vcu.edu/momspi).
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Life sciences study design
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Sample size In our initial power analysis (grant submission) we estimated with a Δ≥0.5, we would have power >98% with only 50 samples per group to 
identify differences between term and preterm samples. These were projected to include 'all' preterm births, including over 50% due to 
multiparous pregnancies and other medical reasons. In this project, we selected only 'spontaneous' preterm births, which have no obvious 
medical etiology. From the participants in the project, we were able to identify only 47 women who met all of our inclusion/exclusion criteria 
for spontaneous preterm births. These participants would have a higher delta than 'all' women who experience preterm birth. Moreover, 
several recent publications have used as low as 9 or fewer spontaneous preterm births, and no earlier publication had as many as 47. Thus, 
we believed this was a sufficient number to begin with. We were able to match these 47 with 94 term births to increase the statistical power 
of our analysis. In the end, we eliminated 2 preterm births (and their 4 controls) due to not having sufficient data. 

Data exclusions We started with 47 preterm births and 94 term births, but excluded 2 preterms and 4 terms because we lacked the 16S rRNA taxonomic data. 

Replication  Experimental replication was not possible due to extensive cost. We attempted to replicate our findings using other data sets, with significant 
but not ideal results (see the manuscript). Sufficient data are not available in the community for such replication studies. 

Randomization All samples were randomized for sequencing and cytokine assay experiments. For 16S rRNA data, samples were randomized at the PCR stage 
and again at the sequencing stage.

Blinding Case matching was performed blinded to all other study data.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Policy information about studies involving human research participants

Population characteristics The population includes pregnant women 15 years and older and their neonates. Women selected for the the MOMS-PI Preterm 
study were predominantly of African ancestry (~78%) with a household income of less than $20,000 annually (76%).

Recruitment Participants for this study were enrolled from women visiting maternity clinics in Virginia and Washington State. All study 
procedures involving human subjects were reviewed and approved by the institutional review board at Virginia Commonwealth 
University (IRB# HM15527). Participants were enrolled at multiple sites in Washington State by our partner registry, the Global 
Alliance to Prevent Prematurity and Stillbirth (GAPPS, www.gapps.org/). Study protocols were harmonized across sites, and data 
and samples from participants enrolled in Washington State were distributed to the VCU site. All study participants enrolled in 
Virginia and most participants enrolled at Washington State sites were also enrolled in the Research Alliance for Microbiome 
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Science (RAMS) Registry at Virginia Commonwealth University. RAMS Registry protocols were approved at Virginia 
Commonwealth University (IRB# HM15528); GAPPS-associated sites ceded review to the VCU IRB through reliance agreements. 
The study was performed with compliance to all relevant ethical regulations. Written informed consent was obtained from all 
participants and parental permission and assent was obtained for participating minors at least 15 years of age. 
Pregnant women were provided literature on the project and invited to participate in the study. Women who: i) were incapable 
of understanding the informed consent or assent forms, or ii) were incarcerated were excluded from the study. Comprehensive 
demographic, health history and dietary assessment surveys were administered, and relevant clinical data (e.g., gestational age, 
height, weight, blood pressure, vaginal pH, diagnosis, etc.) was recorded. Relevant clinical information was also obtained from 
neonates at birth and discharge. 
At subsequent prenatal visits, triage, in labor and delivery, and at discharge, additional surveys were administered, relevant 
clinical data was recorded and samples were collected. Vaginal and rectal samples were not collected at labor and delivery or at 
discharge. Women with any of the following conditions were excluded from sampling at a given visit: 
1. Incapable of self-sampling due to mental, emotional or physical limitations. 
2. More than minimal vaginal bleeding as judged by the clinician. 
3. Ruptured membranes prior to 37 weeks. 
4. Active herpes lesions in the vulvovaginal region. 
Case/control design. We selected 47 preterm cases of singleton, non-medically indicated preterm births from women who 
delivered between 23 weeks 1 day and 36 weeks 6 days gestation and were enrolled in the Virginia arm of the study and 
delivered at the site prior to August 2016. From this cohort of 627 women, 82 delivered prior to 37 weeks. Tweleve of the 
participants who delivered preterm had multiple gestation pregancies, 21 experienced medically indicated delivery, one 
delivered following fetal demise and one delivered a fetus at a non-viable gestational age. The participants had completed the 
study through delivery, and their gestational age information had been recorded in the study operational database as of July 
2016. We case-matched the preterm participants 2:1 with participants who completed the study with singleton term deliveries 
≥39 weeks to avoid complications associated with early term birth51–53, matching based on ethnicity, age and income. With 
these criteria, we matched controls to cases as close as possible, loosening criteria at each pass using an in-house script; a few 
difficult-to-match cases were matched by hand. Case matching was performed blinded to all other study data. Two of the 47 
preterm births did not have 16S rRNA that passed QC, thus these PTB samples and their controls were excluded from the 
taxonomic 16S rRNA analyses (Fig. 1) and demographic data in Table 1. 
Possible self-selection bias. Women were approached in our prenatal clinics, informed of the project with its goals and protocols, 
and asked if they would like to participate. Since women were given the choice to participate, there is always the possibility that 
there could be self selection bias. That said, we detected no such bias, as most women were motivated to participate as they 
were quite aware of the challenges of adverse events in pregnancy and preterm birth.

Ethics oversight Institutional Review Board for Human Subjects REsearch at VCU

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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